ESO Programmes in Ground-Based Astronomy

Mark Casali Head of Instrumentation

Summary of Programmes

- 1. Optical / IR astronomy facilities and instruments
 - Towards the diffraction limit
- 2. mm interferometry with ALMA
- 3. European Extremely Large Telescope (E-ELT)

1. Optical / IR facilities and instruments

Cerro Paranal Observatory

VLT: 4 x 8.2m telescopes

- The 8.2 m diameter primary mirrors weigh 23 tonnes and are only 175 mm thick
- Active optics preserves image quality under gravity/temperature changes

VLT interferometry

ESO

European Organisation for Astronomical

Research in the Southern Hemisphere

Cerro Paranal Observatory

Instrumentation at the VLT from the visible up to 28 microns

Exo European Organisation for Astronomical Research in the Southern Hemisphere 16 x 2k x 2k HgCdTe

1986

ESO

European Organisation for Astronomical Research in the Southern Hemisphere

> 24 2.8x2.8" IFUs. 0.2" sampling.
> 3 spectrographs (H2RG)
> 24 cryogenic pick-off arms, operating on 7.2' field
> 1 to 2.5 micron operation

High stability - HARPS

<1 m/s stability

Achieving diffraction limit – a final technical frontier

Astronomers hate the atmosphere

- Absorption at different wavelengths
 - We're stuck with it
- Turbulence (fasten your seatbelts) causes wavefront distortions with ms timescales

– We can try to correct it

Free Atmospheric image quality

At the diffraction limit

European Organisation Development of Piezo DM technology

for Astronomical

Voice Coil DMs

- Ø 1.1m convex
- 1170 actuators
- 29 mm actuator pitch
- 1 ms response
- Stroke 50 / 1.5 μm

Laser Reference Star

European Organisation for Astronomical Research in the Southern Hemisphere

European Organisation for Astronomical Research in the

Adaptive optics flavours

- on-axis AO with NGS
- on-axis AO with single laser
- ground layer correction with NGSs/Lasers
- multiple lasers for LTAO
- multi-conjugate correction with multiple lasers
 - high density of actuators for extreme correction
 - adaptive telescopes (VLT and ELT)

At the diffraction limit – Naos-Conica

185 element DM ESO

3M solar mass BH at Galactic Center

Near-IR Flare from Galactic Centre (VLT YEPUN + NACO)

ESO PR Photo 29a/03 (29 October 2003)

© European Southern Observatory

2. mm Interferometry with ALMA

A universe of cold gas and molecules

Atacama Large Millimetre (& submillimetre) Array

- ALMA is the world's largest ground-based astronomy project
- Interferometer at mm and sub-mm wavelengths
- In final construction in the Atacama desert
- Three sites in Chile
 - ALMA Operations Site (AOS): high, dry site, Chajnantor Plateau (5000m)
 - **Operations Support Facility (OSF)**: Technical base (2900m) near San Pedro de Atacama
 - Santiago headquarters

An International Project

- ALMA is a collaboration between
 - Europe (14 member states of ESO)
 - North America (USA, Canada), and
 - East Asia (Japan, Taiwan)
- In Chile, the *Joint ALMA Observatory* commissions and operates ALMA
- ALMA costs ~1.2 billion €, shared among the partners

ALMA features

- ALMA will have the collecting area of a football field (~7000 m²)
- 66 antennas
 - 50 x 12m antennas from Europe and North America
 - Compact Array of 4 x 12m and 12 x 7m antennas from Japan
- separations from 15m to 16km
- Low-noise, wide-band SIS receivers
- Digital correlator giving wide range of spectral resolutions

ALMA Frequency Bands

Atmospheric transmission at Chajnantor, pwv = 0.5 mm

Southern Here Cold universe full of molecules

ESO

European Organisation for Astronomical Research in the Southern Hemisphere

ESO

192 antenna interferometry stations

Lonely road

- Signals are amplified, digitized and combined in the "correlator" – a big digital processor. 120 Gb/s per antenna
- Extensive use of <u>photonics</u> for this and to synchronize the receivers which has to be done at the femtosecond level.

Block Diagram of a Heterodyne Receiver

Components:

- Optics
- Mixer
- Local Oscillator (LO)
- IF amplifier(s)
- Dewar and cryogenics
- Bias electronics

Spiral wind

ALMA Observations of the Carbon AGB star

- Maercker et al. 2012, Nature

ALMA Science Highlights | 19 Dec 2012

First spectroscopic redshift survey with ALMA

ALMA Cycle 0 Band 3 100 GHz compact configuration 26 sources 5 tunings in the 3 mm band 10 minutes per source

Bold = unambiguous redshift from ALMA

black = single lines with ALMA, confirmed with C+ or CO(1-0) with APEX or ATCA

DIUC = single line detected with redshift, most likely redshift from photo-z

red = no line detected

3. The E-ELT

biggest optical/IR telescope in history

The European Extremely Large Telescope

Armazones

Paranal

The E-ELT

- 40-m class telescope: largest optical-infrared telescope in the world.
- Segmented primary mirror.
- Active optics to maintain collimation and mirror figure.
- Adaptive optics assisted telescope.
- Diffraction limited performance.
- Wide field of view: 10 arcmin.
- Mid-latitude site (Armazones in Chile).
- Project fully approved in Dec 2012.
- Construction started in 2013.

The E-ELT Project

- Top priority of European ground-based astronomy (on Astronet and ESFRI lists).
- Cerro Armazones in Chile selected as the E-ELT site in April 2010.
- Detailed Design Phase completed in 2011. Construction Proposal published in Dec 2011.
- Instrument Roadmap (Nov 2011): 2 first-light instruments + plan for 1st generation.
- Project fully approved in Dec 2012.
- Construction started in 2013.
- Start of operations early next decade.
- Construction cost: 1083 M€ (including first-light instrumentation).

The Telescope

- Nasmyth telescope with a segmented primary mirror.
- Novel 5 mirror design to include adaptive optics in the telescope.

- Two instrument platforms nearly the size of tennis courts can host 3 instruments each + Coudé lab.
- Multiple laser guide stars, launched from the side.
- Nearly 3000 tonnes of moving structure.

The Mirrors

M1: 39.3 m, 798 hexagonal segments of 1.45 m tip-to-tip: 978 m² collecting area

M4: 2.4 m, flat, adaptive 6000 to 8000 actuators

M5: 2.6 x 2.1 m, flat, provides tip-tilt correction

The Dome

- Classical design.
- Diameter = 86 m, height = 74 m.
- ~3000 tonnes of steel.
- Fully air-conditioned and wind shielded.

ESO

European Organisation for Astronomical

for Astronomical Research in the Southern Hemisphere Programmes into the 2020s

