Scintillators and photodetectors ESI School 2013

Outline:

- Scintillators

- mechanism and properties
- organic and inorganic scintillators

- Photodetectors

- Photomultipliers and its derivations (MA-PMT, MCP)
- Solid state photodetectors (pin diodes, APD, SiPM)
- Hybrid Photo Diodes (HPD)

30 mins impressions, slightly HEP oriented, biased by my own experience

CERN, May 2013

Chiara Casella, ETH Zurich

Usage of scintillators and photodetectors

from old times...

Ernest Rutherford (1871-1937)

- PhD's were selected according to their eyes capabilities...
- 40's : invention of the PMT (light pulse => electrical signal)
- ~ 50 years of detector development, starting from MWPC Charpak, 1968 -(revolution in electronics detection of particles)

Usage of scintillators and photodetectors

... up to NOW and HERE !

C.Joram, NIM A 695 (2012) 13-22

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Usage of scintillators and photodetectors

... up to NOW and HERE !

C.Joram, NIM A 695 (2012) 13-22

first high energy collisions, 30 March 2010

Higgs discovery announcement, 4 Jul 2012

Scintillators

Scintillators

Scintillators : class of materials which "scintillate" when excited by ionizing radiation

Basis of the scintillation : energy loss from ionizing radiation i.e. IONIZATION and/or EXCITATION of the medium atoms / molecules

Two main categories of scintillator materials (details of the scintillation mechanism and properties)

	ORGANIC	INORGANIC	
scintillation	e.g. plastics is a molecular property	e.g. Nal , BGO, LYSO scintillation is bound to the	crystal lattice structure
		-3-	

- inherent molecular property
- arises from the electronic structure of the molecules
- orbital arrangement of the electrons in organic compounds (tightly bound e in σ -orbitals ; loosely bound e in π -orbitals)

potential energy configuration of the molecule

- inherent molecular property
- arises from the electronic structure of the molecules
- orbital arrangement of the electrons in organic compounds (tightly bound e in σ -orbitals ; loosely bound e in π -orbitals)

potential energy configuration of the molecule

Organic scintillators (binary / ternary) solutions

Solutions of one or more organic scintillators in an organic solvent

- same scintillation mechanism as before
- different energy absorption mechanisms:
 - non radiative dipole-dipole exchange (Forster transfer)

[dominates over the radiative transfer for high concentration]

challenge: right choice of the elements and concentrations

result : great versatility (in emission wavelength, photodetector matching, fabrication...)

Physical Constants of SGC Plastic Scintillators

Scintillator	Light Output % Anthracene ¹	Wavelength of Maximum Emission, nm	Decay Con- stant, Main Component, ns	Bulk Light Attenuation Length, cm	Refractive Index	H:C Ratio	Loading Element % by weight	Density	Softening Point °C	plastic scintillators
BC-400	65	423	2.4	250	1.58	1.103		1.032	70	
BC-404	68	408	1.8	160	1.58	1.107		1.032	70	
BC-408	64	425	2.1	380	1.58	1.104		1.032	70	
BC-412	60	434	3.3	400	1.58	1.104		1.032	70	
BC-414	68	392	1.8	100	1.58	1.110		1.032	70	
BC-416	38	434	4.0	400	1.58	1.110		1.032	70	
BC-418	67	391	1.4	100	1.58	1.100		1.032	70	
BC-420	64	391	1.5	110	1.58	1.100		1.032	70	
BC-422	55	370	1.6	8	1.58	1.102		1.032	70	
BC-422Q	11	370	0.7	<8	1.58	1.102	Benzephenone,1%*	1.032	70	
BC-428	36	480	12.5	150	1.58	1.103		1.032	70	
BC-430	45	580	16.8	NA	1.58	1.108		1.032	70	
BC-436	52	425	2.2	NA	1.61	0.960 D:C	Deuterium, 13.8%	1.130	100	
BC-440	60	434	3.3	400	1.58	1.104		1.032	99	
BC-440M	60	434	3.3	380	1.58	1.104		1.039	100	
BC-444	41	428	285	180	1.58	1.109		1.032	70	
BC-444G	34	490	285	180	1.58	1.109		1.032	70	
BC-452	32	424	2.1	150	1.58	1.134	Lead, 5%	1.080	60	
BC-454 5%	48	425	2.2	120	1.58	1.169	Boron, 5%	1.026	60	liquid
BC-480		425	—	400	1.58	1.100		1.032	70	inquia
BC-482A	QE=.86	494	12.0	300	1.58	1.110		1.032	70	scintillators
BC-490	55	425	2.3	NA	1.58	1.107		1.032	70	Sommators
BC-498	65	423	2.4	NA	1.58	1.103		1.032	70	
Anthracene li	ght output = 40-5	50% of NaI(TI)	• 0.1 to 5	5 weight % also	available	** Ratio	o of Cerenkov light to s	cintillator lig	ht = 10:1	cintillators

ORGANIC SCINTILLATORS :

- large choice of emission wavelength
- short decay time (~ ns)
- long attenuation length (~ m) => large size possibilities
- ease of fabrication, flexibility in shape and dimensions, both solid and liquid scintillators
- modest light yield (because of small solute concentration) max 10000 γ/MeV -6-

Scintillator	Light Output % Anthracene*	Maximum Emission, nm	Decay Constant, n
BC-501A	78	425	3.21
BC-505	80	425	2.5
BC-509	20	425	3.1
BC-517L	39	425	2
BC-517H	52	425	2
BC-517P	28	425	2.2
BC-5175	66	425	2
BC-519	60	425	4
BC-521	60	425	4
BC-523	65	425	3.7
BC-523A	65	425	3.7
BC-525	55	425	3.8
BC-531	59	425	3.5
BC-533	51	425	3
BC-537	61	425	2.8
BC-551	40	425	2.2
BC-553	34	425	3.8

Wavelength of

- crystalline property
- bound to the crystal lattice structure, and in particular to its 'defects'

• typical energy gaps Eg ~ few eV (semiconductors)

- crystalline property
- bound to the crystal lattice structure, and in particular to its 'defects'

Energy band model

- typical energy gaps Eg ~ few eV (semiconductors)
- ionizing radiation => ΔE => ionization / excitation
- if <u>perfectly pure crystal</u> => de-excitation is a <u>completely inefficien</u>t process

- crystalline property
- bound to the crystal lattice structure, and in particular to its 'defects'

Energy band model

- typical energy gaps Eg ~ few eV (semiconductors)
- ionizing radiation => ΔE => ionization / excitation
- if perfectly pure crystal => de-excitation is a completely inefficient process
- if impurities in the lattice : energies allowed in the forbidden region
 - external activators doping (e.g. TI in NaI => NaI(TI))
 - defects in the structure
 - stechiometric excess of one component

- crystalline property
- bound to the crystal lattice structure, and in particular to its 'defects'

Energy band model

- typical energy gaps Eg ~ few eV (semiconductors)
- ionizing radiation => ΔE => ionization / excitation
- if perfectly pure crystal => de-excitation is a completely inefficient process
- if impurities in the lattice : energies allowed in the forbidden region
 - external activators doping (e.g. TI in NaI => NaI(TI))
 - defects in the structure
 - stechiometric excess of one component
- => de-excitation produces SCINTILLATION

Table 28.4: Properties of several inorganic crystal scintillators. Most of the notation is defined in Sec. 6 of this *Review*.

Parameter Units:	$\rho_{\rm g/cm^3}$	MP °C	X_0^* cm	R_M^* cm	dE^*/dx MeV/cm	λ_I^* cm	$\frac{\tau_{\rm decay}}{\rm ns}$	λ_{\max} nm	n^{\natural}	Relative output [†]	Hygro- scopic?	d(LY)/dT %/°C [‡]
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	230	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF ₂	4.89	1280	2.03	3.10	6.5	30.7	630 ^s 0.9 ^f	300^{s} 220^{f}	1.50	36^{s} 3.4^{f}	no	${-1.3}^s$ ${\sim}0^f$
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1300	560	1.79	165	slight	0.3
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	35 ^s 6 ^f	420 ^s 310 ^f	1.95	3.6^{s} 1.1^{f}	slight	-1.3
PbWO ₄	8.3	1123	0.89	2.00	10.1	20.7	30 ^s 10 ^f	425^{s} 420^{f}	2.20	0.083^{s} 0.29^{f}	no	-2.7
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	83	no	-0.2
LaBr ₃ (Ce)	5.29	788	1.88	2.85	6.9	30.4	20	356	1.9	130	yes	0.2

from Particle Data Group, Review of Particle Physics

Light yield ~ 40000 γ/MeV

* Numerical values calculated using formulae in this review.

^a Refractive index at the wavelength of the emission maximum.

[†] Relative light output measured for samples of 1.5 X_0 cube with a Tyv wrapping and a full end face coupled to a photodetector. The quantum efficie **INORGANIC SCINTILLATORS** : photodetector is taken out.

[‡] Variation of light yield with temperature evaluated at the room temperature

WRT ORGANIC SCINTILLATORS

- high density, high Z => High stopping power, high conversion efficiency
- high light yields => Good energy resolution
- long decay times (few 10s 100s ns)
- expensive (e.g. LYSO ~ 100 euro/cm3)
- no large sizes

inorganic

high density, high Z

high light yield

γ-detectors
 (e.g. medical imaging applications),
 HEP electromagnetic calorimeters (γ,e)

fast cheap large flexibility

organic

timing (e.g. TOF, trigger, veto...), large areas coverage

Photodetectors

Basic principles of photodetection

GOAL : Detect photons in the visible / near-visible range and convert them into a detectable electric signal $\lambda \in [100, 1000] \text{ nm};$ E ~ few eV from scintillation or Cherenkov effect

fundamental phenomenon : photoemission i.e. photoelectric 1) optical absorption process $\gamma \Rightarrow e$ effect photoemissive material 2) electron diffusion "photocathode" 3) escape process e ("photoelectron") semitransparent photocathode **External photoelectric effect:** window photoelectrons extracted from the photocathode /most widely detection principle: amplification and collection of pe adopted solution ! **PHOTOMULTIPLIERS (PMTs) HYBRID PHOTO DIODES** Internal photoelectric effect: е opaque photoelectrons not extracted photocathode detection principle: measurement of the photocurrent SILICON PHOTODETECTORS (pin, APD, SiPM) substrate

-9-

Photoemission is a threshold phenomenon

a minimum photon energy is required to produce photoemission ! (depending on the photocathode)

Quantum efficiency (QE)

not all photons incident on a photoemissive material will cause the emission of photoelectrons ! => Sensitivity / Quantum efficiency

alkali (Li,Na,K,Rb,Cs): metals with low electronegativity i.e. high tendency to release electrons

Photodetectors

vacuum family:

Photomultipliers (PMT) Multi anode photomultipliers (MA-PMT) Micro Channel Plates (MCP)

The photomultiplier tube (PMT)

PMT: Statistical fluctuations

, *, a*

- photoemission from the photocathode
- secondary emission from the dynodes

statistical processes

 \Rightarrow

statistical fluctuations gain spread

Poisson statistics:

$$P_{\mu}(a) = e^{-\mu} \frac{\mu}{a!}$$
$$\sigma = \sqrt{\mu}$$

Relative fluctuations:

$$R = \frac{\sigma}{\mu} = \frac{1}{\sqrt{\mu}}$$

Single photoelectron spectrum typical dynodes : CuBe, $\delta \sim 4$ (100-200eV)

=> Single photon resolution : Statistically limited

probability of *a* events, when the mean value is μ

Biggest fluctuations when µ is small => Gain spread is essentially dominated by the 1st 2nd dynodes

The photomultiplier tube (PMT)

PMT :

commercial products since > 70 years

- high gain ~ 10⁶ 10⁷
- high sensitivity (low light pulse, single pe)
- large sensitive areas available
- large variety in windows/photocathodes, dynode design...

=> Why not (only) PMTs??

- large, bulky (now turning into flat design with good area coverage), fragile, costly on the other hand, the cost per instrumented area is the lowest
- affected by magnetic fields
- you might want a small, pixelated light detector
- you might want even faster timing
- you might want improved p.e. resolution (less gain fluctuations)
- you might want higher quantum efficiency (especially at longer wavelengths)

•••

Multi Anode PMT (MA-PMT)

Multi-anode (Hamamatsu H7546)

- Up to 8x8 channels (2x2 mm2 each);
- Size: 28x28 mm2
- Active area: 18.1x18.1 mm2 (41%)
- Bialkali PC : QE ~ 25-45% (λmax = 400 nm)
- Gain ~ 3x10^5
- Gain uniformity typ. 1:2.5
- Cross-talk typ. 2%

position sensitive PMT arrays

in a single vacuum envelope

- multiple PMTs within the same vacuum housing
- one photocathode (common to all channels)
- charge multiplication in the dynodes preserves the spatial information of the hit position at the photocathode
- multi-anodes

Advantages wrt PMT :

position sensitive

compact => better timing perfs compact => B tolerant

Limitations :

non uniformity in the gain

- (~ 30% differences among channels)
- cross-talk

reduced single pe resolution

Micro channel plates (MCP) PMTs

- lead glass plate
- perforated by arrays of cylindrical holes ("micro-channels")
- inner surface of each channel = continuous dynode
- δ ~ 2 / strike
- Gain = f (Length/Diameter)
- typical L/D ~ 40 => ~ 10 strikes =>
 Gain = 2¹⁰ ~ 10³ (single plate)

typical configuration: Chevron configuration.

- 2 MCP => Gain ~ 10⁶
- segmented anode possible => position sensitive

Advantages wrt PMT :

excellent timing resolution ($\sigma \sim 40 \text{ ps}$)

B tolerant (0.1 T random direction ; ~ 1T axial dir.) position sensitive (if segmented anode) better single pe (if operated in saturation mode)

Limitation :

severe aging effect (due to ion feedback) limitation on count rate (long recovery time)

Photodetectors

Solid state photodetectors: pin diode avalanche photo diode (APD) silicon photomultiplier (SiPM, G-APD)

Si p-n junction as photodetector

PIN photodiode

P-I-N junction

- "i" : intrinsic (i.e. undoped)
- no free carriers
- conversion region
- acts as (thick) depletion region

- QE ~ 80% @ 500 800 nm
- the full thickness (~ 300 $\mu m)$ is sensitive volume
- tick layer (~ 300 µm) :
 - sensitive red / infrared (long λ_abs is Si)
 - low noise (low C)

- no bias required
- high sensitivity, large spectral response
- simple / reliable / successful
- widely used in HEP on large scale applications (small volume, insensitive to magnetic field, high QE)
- no internal gain
 - => no single photon detection
 - => min ~ few 100 γ
 - => requires external amplifier

Avalanche PhotoDiode (APD)

- p-n junction with increased electric field
- Vbias ~ 100 200 V
- internal gain, due to amplification of charge carriers with an avalanche development (only e start secondary ionization) - Linear regime
- Gains: M ~ 50 500 (f(Vbias))
- QE ~ 80% [same as for PIN diodes]
- peaked spectral response (because of the thin conversion region)
- Avalanche formation => statistical fluctuations
- ENF ≥ 2 (increases with gain)

Geiger mode APD (G-APD) / Silicon photomultiplier (SiPM)

array of several micro-cells APDs operated in Geiger mode

every single cell :

- Vbias > Vbd (Vovervoltage = Vov = Vbias Vbd)
- Geiger regime: e and h participating to the avalanche
- Gains ~ 10⁵ 10⁶
- when hit by one/n photon(s) => full discharge => released charge: Q_i = C_D (V_{bias} - V_{bd}) = C_D V_{ov}
- no analogue info at the single cell level

All cells connected to a **common bias** through **independent quenching resistors**, all integrated within a sensor chip. The output is the **analogue sum of all cells**

areas up to 5x5 mm² nr APD cells ~ 100 to 15000 / mm² typical cell size ~ 20 to 100 μ m

SiPM : photon counting

PMT (for comparison)

Intrinsic non-linearity in the response to high Nr incident photons

- Linearity as long as Nr_detected_photons < Nr_cells

$$N_{\gamma_det} = N_{cells} \left(1 - e^{\frac{N_{\gamma_inc} \cdot PDE}{N_{cells}}}\right)$$

Gain and Photon detection efficiency of SiPM

- excellent linearity of gain with V_{bias} [Q_i = C V_{ov}]
- typical gains : 10⁵ 10⁶
- typical V_{bias} ~ 70 100 V
- gain strongly dependent on temperature
 - higher T => bigger lattice vibrations
 - carriers may strike the lattice before ionization
 - ionization becomes more difficult

(the same is true for APD detectors!)

T, V_{bias} must be precisely controlled!!!

sensitivity : photon detection efficiency (PDE)

typical PDE ~ 30 % (λ-peaked)

SiPM noise

Counts registered by SiPM in absence of light. Three main sources:

• Dark counts: mainly by thermal generation

typical Dark Count Rates (DCR) : **100 kHz - few MHz / mm² (@** 0.5 pe thr) => Cooling ! (dark rate is halved every 8K)

• Optical cross-talk:

- due to photons generated in the avalanche process $(3\gamma/10^5 \text{ carriers}, \text{ A. Lacaita et al. IEEE TED 1993})$, being detected by neighbor cells

- contribution added to the real signal
- stochastic process => contribute to ENF

- charge carriers trapped in the lattice defects
- then released with a certain time constant

SiPM on the market

- instrumentation (e.g. PET/ MRI)
- :-) compact / high gain with low voltage / low power consumption / insensitive to magnetic fields / high QE / single photon counting
- :-(high dark count rates / cooling / stability issues (T,V) / small & not cheap!

- current trends of development : higher PDE / different λ matching / larger areas / lower noise / lower x-talk
- <u>DIGITAL SiPM (Philips) => See Thomas Frach lecture</u> tomorrow

Photodetectors

Hybrid PhotoDiode (HPD)

Hybrid Photodiodes: HPD

hybrid : combination of vacuum photodetector and solid state technology

Gain: achieved in one step (by energy dissipation of few keV pe's in solid state detector anode)

=> low gain fluctuations (Fano factor *F* ~ 0.12 in Si)

Example :

 $\Delta V = 20 \text{ kV} \Rightarrow M \sim 5000, \sigma \sim 25$ => overall noise dominated by electronics

- single photon sensitivity
- large areas coverage
- good spatial resolution (with segmented Si sensor)
- magnetic field operation (if proximity-focusing electrons optics)

HPD properties

Single photon counting

High gain, low fluctuations => Suited for single photon detection with high resolution

Spatial resolution

With a segmented Si sensor => HPD : position sensitive photodetector with high spatial resolution in a large area

The light image in the photocathode is projected into the Si sensor (pixel array).

High spatial resolution determined by:

- a) granularity of the Si sensor
- b) focusing electron-optical properties

There is a large variety of photodetectors and "the perfect one" does not exist. But you can choose the best match with your application !

	QE	gain	V_bias	single photon counting	Spatial resolution	Time resolution	ENF	Photo-effect
РМТ	~25%	10^6 to 10^8	0.5 - 3 KV	limited	no	~ 1ns	1 - 1.5	external
МАРМТ	~25%	~ 10^6	~ 1 kV	limited	yes	~ 0.1 ns	1 - 1.5	external
МСР	~25%	~ 10^6	~ 2 kV	reasonable(*)	yes	~ 20 ps	~ 1 (*)	external
pin	~80%	1	0 < V < few V	no	no	(**)	1	internal
APD	~80%	50-500	~ 100 - 200 V	no	no	(**)	2 (@G=50)	internal
G-APD	max 80% (λ dep) PDE ~ 30%	10^5 to 10^6	< 100 V	yes	no	< 0.1 ns	≥ 1(***)	internal
HPD	~25%	~ 10^3	10 - 20 kV	yes	yes	~ 1ns	~ 1	external

-27-

only approximate and indicative summary table

(*) = for MCP used in saturation regime

vacuum

Si-detector

hybrid

(**) = cannot be quoted, because device is not looking to single photons

(***) = ENF \sim 1, but for the cross talk contribution

not covered at all in this lecture :

- Gas photodetectors
- Photographic emulsions
- Liquid scintillators

Bibliography

- W.R. Leo, "Techniques for Nuclear and Particle Physics Experiments", Springer-Verlag
- G. Knoll, "Radiation Detection and Measurements", John Wiley & Sons
- J.B. Birks, "The Theory and Practice of Scintillation Counting", Pergamon Press
- Photonis, "Photomultiplier tubes. Principles and applications"
- PDG K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010) http://pdg.lbl.gov/ PDG
- D. Renker, "New developments on photosensors for particle physics", NIM A 598 (2009) 207-212
- D. Renker, E. Lorentz, "Advances in solid state photon detectors", 2009 JINST 4 P04004
- J. Haba, "Status and perspectives of Pixelated Photon Detector (PPD)", NIM A 595 (2008) 154-160
- C. Joram, "Large area hybrid photodiodes", Nuclear Physics B (Proc. Suppl.) 78 (1999) 407-415

slides from past detector schools (available on the web) :

- Dinu, Gys, Joram, Korpar, Musienko, Puill, Renker EDIT School, 2011
- C.Joram XI ICFA School 2010
- F. Sauli CHIPP Winter School 2010
- C.Joram ESI 2009
- Gys, D'Ambrosio, Joram, Moll, Ropelewski CERN Academic training 2004/2005 (Many thanks to the authors for the material I re-used for these slides)

chiara.casella@cern.ch

Still questions?

particle detectors books

> inspiring papers