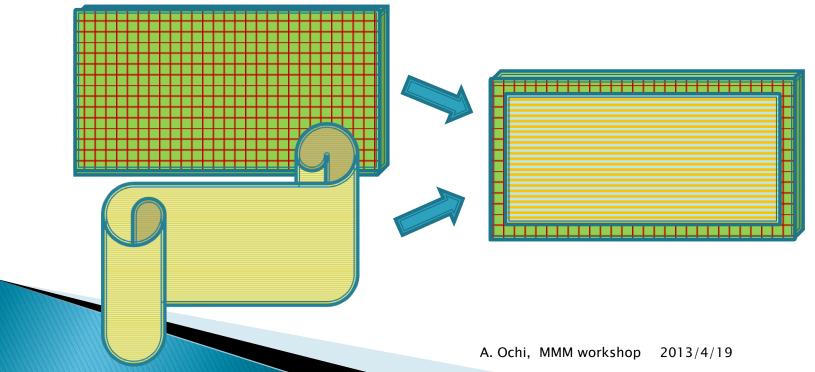
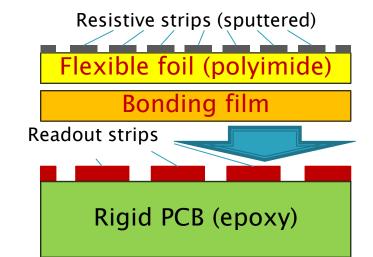
Industrialization on Resistive strip deposit Atsuhiko Ochi Kobe University

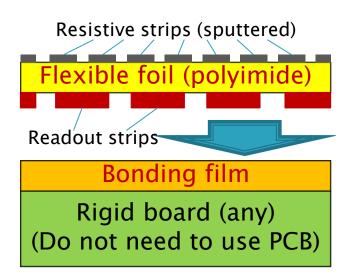
19/04/2013 New Small Wheel MicroMegas Mechanics and layout Workshop


Liftoff process using sputtering

- Very fine structure (a few tens micro meter) can be formed using photo resist. (same as PCB)
- Surface resistivity can be controlled by sputtering material and their thickness


MM PCB production with parallel process

- We can divide the production process of resistive strip from that of readout board.
 - Resistive strip is formed on thin foil
 - Because of fine pitch, < 200 micron, we don't need fine alignment between resistive strips and readout strips.
- Dividing those processes will make the yield of production growing up.



Two options for resistive strip deposit

- 1. Only resistive strips are on the flexible foil
 - Readout strips are on the rigid board
 - Substrate thickness is more than 50 µm (polyimide base and glue sheet (35 µm))

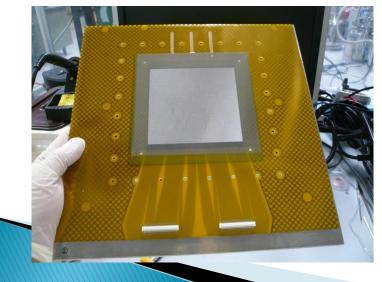
- 2. Readout strip patterns are printed on the rear side of flexible foil
 - No need to make fine strip on rigid board
 - $^\circ$ Thin substrate thickness ($<25~\mu m)$ is available.

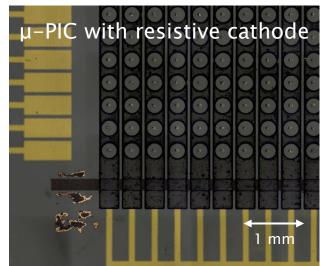
For patterning process

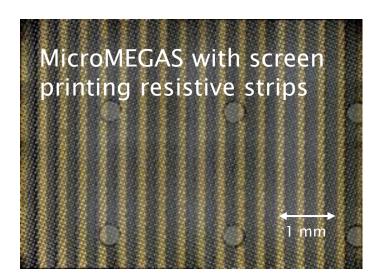
PCB company

- They are expert for FPC (Flexible Printed Circuit) production.
- Liftoff is basic process for FPC production

Exposure machines in clean room


Electro forming machines



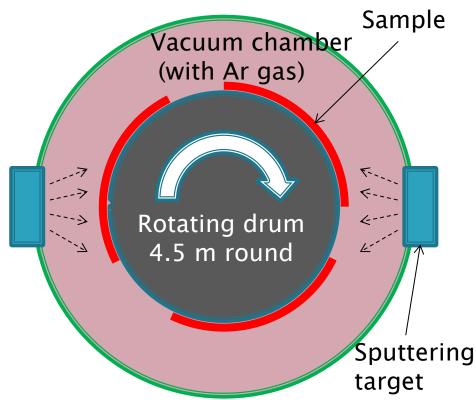

Etching machines

Fine patterning for MPGDs

- Laytech inc has many experiences for producing MPGDs.
 - µ-PIC with resistive cathode
 - GEM with resistive foil
 - MicroMEGAS with screen printing technique

Be-Sputter

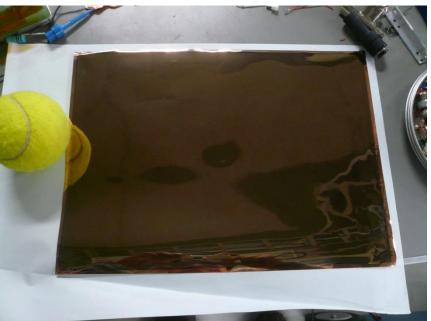
The door to the next generation is nanotechnology.


- Sputtering company
- They have large sputtering chamber
 - Ф1800 X H2000
 - 1m X 4.5m (flexible board) can be sputtered
- They have special technology for uniform sputtering for large area

株式会社 ビースパッタ

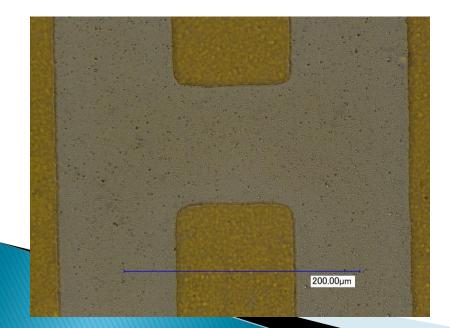
Sputtering equipment

- Large size sputtering is available.
 - 4.5m X 1m
- Two layer stack sputtering is available
 - Using two separated target
- Very good uniformity
 - Less than nm size difference, using their special technology



Sputtering with resistivity

- Tungsten and Carbon are sputtered on polyimide (25µm thickness) foil
 - Surface resistivity of first sample (W 10Å, C 300Å) was $8M\Omega/sq$.
 - Adhesion of coating is very strong. No resistivity change with rubbing surface by cleaning paper.
 - No resistivity change found after long exposure (1 week) to air


Carbon (300–600Å) Tungsten (10–50Å)

Substrate (polyimide)

Fine patterning with lift off process

 Fine strip pitch of 200 µm is formed. It will be possible to make more fine structure.

Mass production feasibility

- Assumption:
 - Size of foils: 1000mm x 500mm
 - Quantity: 3000
 - Sputtering: W:10Å, C:600Å
- 500 foils / month can be produced
 - 8 foils can be sputtered simultaneously in one batch.
 - Sputtering time is estimated 2 hours. (Including overhead, 3 hours / one batch)
 - 24h/3h x 8 foils x 20days = 1280 foils / month (Applying safety factor >2 → 500 foils/month)
 - It will take half year, for full production.
- Cost estimation (Very rough)
 - 100k JPY / one batch (for spattering 8 foils) (13k JPY / foil)
 - It is not sure for the cost of liftoff process, but it is estimated around 20k JPY/foil
 - Total 33k JPY/foil, 100M JPY for full production