

VMM ASIC

Status Report - April 2013

Gianluigi De Geronimo

Microelectronics Team, Instrumentation Division Brookhaven National Laboratory

Outline

- VMM1 tested
 - architecture and results (brief)
 - issues
- VMM2 in design
 - architecture
 - fixes (issues from VMM1)
 - new features
 - pinout and packaging (tentative)
 - schedule (tentative)

- dual polarity, adj. gain (0.5-9 mV/fC), adj. peaktime (25-200 ns), DDF shaper
- discriminator with sub-hysteresis and neighboring (channel and chip)
- address of first event in real time at dedicated output (ART)
- 16 direct timing outputs: time-over-threshold or time-to-peak
- peak detector, time detector <1 ns
- multiplexing with sparse readout and smart token passing (channel and chip)
- threshold & pulse generator, analog monitor, mask, temperature sensor, 600mV BGR, 600mV LVDS
- power 4.5 mW/ch, size 6 x 8.4 mm², process IBM CMOS 130nm 1.2V, test structures

Resolution Measurements

Charge Timing

- charge resolution ENC < 5,000 e⁻ at 25 ns, 200 pF
- analog dynamic range Q_{max} / ENC > 12,000 → DDF
- timing resolution < 1 ns (at peak-detect)

BROOKHAVEN

$$\begin{array}{c|c} \mathsf{ENC}\,\tau_{\mathsf{P}} & \lambda_{\mathsf{P}} \\ \mathsf{O} & \mathsf{O}_{\mathsf{P}} \end{array}$$

≈ **0.3-0.8**

Issues in VMM1 → Fixes in VMM2

power distribution

voltage drop across power and ground wire-bonds

front-end

- stability at large capacitance (affects peaking time and gain)
- saturation at high rate
- leakage from ESD protection (disables positive charge operation)
- test pulse linearity, settling time, range (needs optimization)
- ESD protection (may need optimization)

discrimination

- digital pick-up in sub-hysteresis (affects low amplitudes)
- threshold dispersion and trimming (needs optimization)

signal processing

peak detector stability (affects low amplitudes)

direct timing (TGC)

- digital pick-up on pulse tail
- delay and time walk (needs optimization)
- possible locking in TtP mode

test and readout

- internal reset optimization
- dedicated input for test-pulse strobe

- additional gain settings (TGC, MM)
- external trigger
- TGC: 64 outputs, 6-bit ADC 25ns serialized with dedicated clock

TGC ADC and Serializer

- 160 MHz external clock
- Conversion ends ~25ns after peak-found, programmable
- Dead time from charge event <100ns
- Amplitude data D5-D0 shifted at each clock edge

- additional gain settings
- external trigger
- TGC: 64 outputs, PtT, 6-bit ADC 25ns serial with dedicated clock
- ART: flag and address serialized with dedicated clock

ART Serializer

- 160 MHz external clock
- Flag and address serialized
- Address data D5-D0 shifted at each clock edge

- TGC: 64 outputs, PtT, 6-bit ADC 25ns serial with dedicated clock
- ART: flag and address serialized with dedicated clock
- 10-bit ADCs 200ns for amplitude and timing, digital memories
- Gray-code counters for BC-ID (12-bit) and L1A-ID (8-bit)
- 2-bit DATA output with dedicated sync and 80 MHz clock

New Features

front-end

- additional gain settings to match signal sfrom TGC and MicroMegas
- option to route monitors to PDO, TDO outputs for baseline acquisition

signal processing

- multi-phase current-output peak detector 1
- ADC 10-bit 200ns on PDO and TDO ¹
- digital buffer, multiplexing, and logic for continuous acquisition
- counters and latches for BC-ID (12-bit) and L1A-ID (8-bit) 1

ART (address in real time)

serialized flag and address

trigger

external trigger for non-data-driven operation

direct timing (TGC)

- from 16 to 64 channels (initially packaging-limited to 32)
- pulse at peak (like ART)
- ADC 10-bit 25ns with serial output after flag 1
- fixed ramp discharge (PtT) ²

layout and packaging

- pads count from 176 to 208
- dual-mode wire-bond (MM, TGC)

radiation tolerance

off-ITAR switch circuit (CERN), optimization ²

¹ <u>Major developments</u>

² If time allows

Pinout and Packaging

BROOKHAVEN

Schedule and Status

task	status
fixes	in progress ~50%
external trigger	complete
ART serializer	in progress ~30%
current-output PD	complete
6-bit ADC and serializer	complete
10-bit ADC and digital buffer	in progress 70%
counters and latches	queued
analog gain	queued
physical layout	June-July 2013
fabrication	August 2013 (tentative)

Acknowledgment

Venetios Polychronakos (BNL)

Neena Nambiar, Emerson Vernon, Alessio D'Andragora, Jack Fried (BNL)

Jessica Metcalfe (BNL & CERN), Ken A. Johns, Sarah L. Jones (University of Arizona, USA)

Nachman Lupu, Lorne Levinson (Technion Haifa, Israel)

Georgie lakovidis (BNL, USA and NTU Athens, Grece),

ATLAS Collaboration, CERN

