MM Electronics Power Concepts

D.Amidei, J. Ameel
University of Michigan

with
V. Polychronakos (BNL)
K. Johns, W. Hart (Arizona)
J. Huth, J. Oliver (Harvard)
U. Landgraf (Freiburg)

MM electronics power

- VMM power required

item	Power (W)	counting
channel	0.008	
chip	0.512	64 channels
FE board	4.10	8 chips
layer	65.5	16 boards
doublet	131	2 layers
quadruplet	262	4 layers
sector	524	8 layers
wheel	8.3 K	16 sectors
system	16.7 K	2 wheels

- the whole power:
- will have ~ 70\% transmission efficiency
- will be x1.3 (?) to include trigger/readout
- example: one sector $=524 *(1 / 0.7) * 1.3=973 \mathrm{~W}$

power delivery

- rad hard VMM operates at 1.2 V
- one sector: 973 W at $1.2 \mathrm{~V} \rightarrow 810 \mathrm{Amps}$
- problem is being solved for Phase1-Phase 2 tracker upgrades
- solution: high voltage transmission using point-of-load DC-DC conversion
- see e.g.
- S. Michelis "Status of DC-DC Components" ATLAS Upgrade Week, 18/11/2012
- K. Klein et al "DC-DC Powering for the CMS Pixel Upgrade", $13^{\text {th }}$ Vienna Conference on Instrumentation, 11/2/2013.

two-step followed by linear regulator

n.b.
each stage costs efficiency ~ 0.8-0.9

one-step followed by linear regulator

n.b.
each stage costs efficiency ~ 0.8-0.9
if find a 48V-1.5V POL converter, do this in one step

DC-DC conversion

- LTM4619V
- 26 V in, $1.5-5.0 \mathrm{~V}$ out
- survives 350 kRad

- ASQ4815
- 48 V in, 1.8 V out
- one step design
- 2"x1" board
- space qualified
- Aachen/CMS custom
- 10 V in, 2.4 V out
- rad hard, B tolerant

Qualify DC-DC converters and linear regulators

 test- efficiency, noise, heat, EMI, etc
as a function of
- radiation
- 200kRad
- BNL Semiconductor Gamma Radiation Facility
- magnetic field
- 0.5-1.0 T
settle device choice this Fall

back-of-envelope for one layer

Assume a one-step 48V design
Per layer:

- 16 boards @ 7.6W*
- 122 W
- 2.5A @48V

Deliver $1 / 2$ current to each side:

- 1.3A @ 48V
- cable:
- 22 AWG d = 0.6mm
- 5meters:
drop 0.3 V
lose 1.7W
* FE board power

$$
4.1 \mathrm{~W} *(1 / 0.7) * 1.3=7.6 \mathrm{~W}
$$

back-of-envelope for one sector = 8 layers

Per layer:

- 128 boards @ 7.6W ${ }^{1}$
- 973 W
- 20.3A @48V
- cable:
2×8 AWG d=3.3 mm
- 125 m
- on each
- 10.1 A
- 2.5 V drop
- 25 W lost

TBD:
power connections
wire size
ganging scheme
grounding

$10)$

summary

- FE electronics power ~ $1 \mathrm{~kW} /$ sector
- transmit as close to 48 V as possible
- using POL DC-DC conversion
- developing concept
- identify/test DC converters, regulators
- understand layout issues
- closely coupled to cooling
- TDR section coming

DC-DC conversion

- Example: Linear LT46119
- works at 150KRad
- Wide Input Voltage Range: 4.5V to 26.5 V (EXTV ${ }_{\text {CC }}$ Available for $\mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$)
- Dual 180° Out-of-Phase Outputs with 4A DC Typical, 5A Peak Output Current for Each

Efficiency vs Load Current with $24 \mathrm{~V}_{\text {IN }}$ ($\mathrm{f}=\mathbf{5 0 0 k H z}$ for $\mathbf{1 . 5 V _ { \text { OUT } } \text {) }}$

