AMMW 2013

CERN Vacuum Controls

Quality Management

Fabien ANTONIOTTI
TE-VSC-ICM
2013-11-14
Outline

- Quality Management
- Strategy: Targets and Tools
- Standardization: Naming Convention
- Tracking Issues and Actions: VTL
- Asset Tracking: MTF
- Document Management: EDMS
- Topology: Layout Service & Controls Settings: Controls Configuration Service
- Processing an issue
- Timeline & Resources
- What else?
Quality Management

• Target:
 • to ensure that a work/product/service is consistent with expectation
 • to provide the means to achieve it

• How:
 • Homogenization: **Naming Convention**, methods & tools
 • **Centralization** of information: actions, documentation, devices settings
 • Preservation of knowledge
 • Maintaining systems **up-to-date**
Strategy: Targets and Tools

ICM QUALITY MANAGEMENT

Actions
- Tracking
 - Target:
 - Requests
 - Reports
 - Examples:
 - Cabling
 - Installation
 - Repairs

Assets
- Tracking
 - Target:
 - ID (serial #)
 - Behavior
 - Lifetime
 - Examples:
 - Manufacturing steps
 - Measurements
 - Radioprotection
 - Changed location

Documentation
- Management
 - Target:
 - Technical knowledge
 - Examples:
 - Procedures
 - Activity Reports
 - Various information

Topology
- &Ctrls Management
 - Target:
 - Location
 - Function
 - Configuration
 - Examples:
 - Position
 - Devices Settings
 - Interlock Levels
 - Cables
 - Profibus Addresses
 - Alarms
Strategy: Targets and Tools

ICM
QUALITY MANAGEMENT

Actions
Tracking

Assets
Tracking

Documentation
Management

Topology

Place available for a given type of object = Functional Position

Identity of Asset

Fabien ANTONIOTTI, CERN - TE-VSC-ICM
Standardization: Naming Convention

- Essential for VTL, MTF, EDMS, Layout DB
- Is the 1st step towards homogenization:
 - Each machine had a ≠ naming convention...
 - But objects are interchangeable between machines

<table>
<thead>
<tr>
<th>Controller</th>
<th>CPS</th>
<th>SPS</th>
<th>LHC</th>
<th>VAC_DB</th>
<th>NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPG300</td>
<td>VGC</td>
<td>VRGC</td>
<td>VRGP</td>
<td>VRCG</td>
<td>VRGPT300</td>
</tr>
<tr>
<td>Volotek</td>
<td>VGCD</td>
<td>-</td>
<td>VRGA</td>
<td>VGHC</td>
<td>VRGPK</td>
</tr>
</tbody>
</table>

- 275 new codes (names) created: mostly inspired from VAC LHC usage
- Now integrated in Accelerators Naming Portal (EDMS1149103)
- For coherent/uniform use in:
 - MTF (using LHC Quality Assurance Definition)
 - Layout DB
 - Documents
 - VAC_DB
Standardization: Naming Convention

<table>
<thead>
<tr>
<th>VRGC</th>
<th>Gauge controller - Crate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRGCT001</td>
<td>Gauge controller - Crate - Multi_TPG300 frame with serial interface - 3x TPG space available with relay connectors, PS, Ref. EDA-01673 / AT-680-4263-000</td>
</tr>
<tr>
<td>VRGCT002</td>
<td>Gauge controller - Crate - Multi_TPG300 frame with serial interface - 2x TPG space available with BURNDY relay connectors, LHC</td>
</tr>
<tr>
<td>VRGCT003</td>
<td>Gauge controller - Crate - Multi_TPG300 frame with serial interface - 3x TPG space available with BURNDY relay connectors, REX Isolde</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VRGP</th>
<th>Gauge controller - Pressure gauge controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRGPA001</td>
<td>Gauge controller - Pressure gauge controller - AGP101 controller - Pfeiffer-Balzers - For membrane piezo gauge</td>
</tr>
<tr>
<td>VRGBP001</td>
<td>Gauge controller - Pressure gauge controller - IKG 011 controller with Analog display - Pfeiffer-Balzers</td>
</tr>
<tr>
<td>VRGPC001</td>
<td>Gauge controller - Pressure gauge controller - VIONIC controller</td>
</tr>
<tr>
<td>VRGPD001</td>
<td>Gauge controller - Pressure gauge controller - IM 51/IM510 G controller - Leybold</td>
</tr>
<tr>
<td>VRGPE001</td>
<td>Gauge controller - Pressure gauge controller - Gauges controller [Local] (VRJGE) - Box for VGR/P/M controls + VPGF local patch-panel to ND100 cable</td>
</tr>
<tr>
<td>VRGPF001</td>
<td>Gauge controller - Pressure gauge controller - IMG 070 controller - Pfeiffer-Balzers</td>
</tr>
<tr>
<td>VRGPG001</td>
<td>Gauge controller - Pressure gauge controller - PKG 044 controller with Analog display - Pfeiffer-Balzers</td>
</tr>
<tr>
<td>VRGPH001</td>
<td>Gauge controller - Pressure gauge controller - PKG 100 controller with digital display - Pfeiffer-Balzers</td>
</tr>
<tr>
<td>VRGPK001</td>
<td>Gauge controller - Pressure gauge controller - VOLOTEK controller - VGC1000</td>
</tr>
<tr>
<td>VRGPS001</td>
<td>Gauge controller - Pressure gauge controller - VGI Power Supply - Ref. LEP.680.4209</td>
</tr>
<tr>
<td>VRGPT</td>
<td>Gauge controller - Pressure gauge controller - Vacuum - Pressure gauge controller - TPG - Pfeiffer-Balzers</td>
</tr>
<tr>
<td>VRGPT251</td>
<td>Gauge controller - Pressure gauge controller - TPGs controller - Pfeiffer-Balzers - Serie 251 - TPG251</td>
</tr>
<tr>
<td>VRGPT252</td>
<td>Gauge controller - Pressure gauge controller - TPGs controller - Pfeiffer-Balzers - Serie 252 - TPG252</td>
</tr>
<tr>
<td>VRGPT256</td>
<td>Gauge controller - Pressure gauge controller - TPGs controller - Pfeiffer-Balzers - Serie 256 - TPG256</td>
</tr>
<tr>
<td>VRGPT261</td>
<td>Gauge controller - Pressure gauge controller - TPGs controller - Pfeiffer-Balzers - Serie 261 - TPG261</td>
</tr>
<tr>
<td>VRGPT262</td>
<td>Gauge controller - Pressure gauge controller - TPGs controller - Pfeiffer-Balzers - Serie 262 - TPG262</td>
</tr>
<tr>
<td>VRGPT300</td>
<td>Gauge controller - Pressure gauge controller - TPG300 (hosts VRMT cards)</td>
</tr>
</tbody>
</table>
In production since Jan-2013
Stores all requests, managed by tickets
To avoid spamming phone-calls/mails
Implemented using REDMINE application:
 • Based on programming language RUBY
 • is a Web interface to a MYSQL Database
 • Robust & customizable
 • Widely used by Universities
 • cost-free
This is not a document/file repository (use rather EDMS, MTF, etc.)
What about SharePoint and JIRA?
Using VTL

- **Automatic Notification** according to the subject to the contact persons (and their backups)
- Currently **1 000+ issues** created 600+ using Industrial support (**FSU**)

- **Analysis** of the FSU activities:
 - requests
 - weekly **planning**
 - validation of weekly **reports**
 - checks of **typical execution times**
 - **performance** evaluation
 - **verification of invoices**
 (FSU weekly reports imported in VTL by script)
Campaigns started Jan-2012:

• **Labeling with Part-ID:**
 - Using specific/technical labels from Brady™
 - 1D: **Code 128** (38.10 x 12.70 mm)
 - 2D: **Datamatrix** (9 x 9 mm)

Ongoing in LHC, Labs, Storage: **~13 000 labels** (> 50% of ICM total ~23 000)

• **Chain verification**: Measurements, Calibrations & Updates
 → All TPG300 in LHC: 1 500+ items tested & identified (2 700 labels)

• **MTF Implementation**:
 - Definition of proprieties & steps for each device type
 - Imported information/data for **~4 500 assets** (~30% of ICM total ~15 000)
Engineering Documentation Management System

http://edms.cern.ch

- Is a Product Lifecycle Management platform
- Based on a commercial product: Agile PLM (Oracle)
- Engineering / equipment data and documentation (drawings, CAD, procedures, NCR...) are:
 - Safeguarded & Organized
 - Access Rights & Visibility: collaborative, sharing & protecting work
 - Verified
 - Approval Processes & Versioning
 - Retrievable on the long-term
 - Knowledge transfer between generations
- Since 2011: large effort to collect/produce docs & store them in EDMS
- New context TE-DEP-VSC-ICM created
- By Oct-2013: more than 210 documents created
 - 76% use the ICM context
Already now for LHC, **Layout views** are directly used in **VAC DB** to produce the configuration files for PLCs & PVSS.

We are now working on the definition of:

- **Functional positions**: eg. "VRGPT.UA87.0108" or "VGPB.A4R8.R"
- ** Relationships/connections/hierarchies** between Functional Positions
- **Settings** of the controls devices, attached to the FP, e.g. alarms, middleware...
- **Level** of details in the control chain

In the future:

- **UNICOS** specifications will be produced directly from Layout DB and CC DB combined
- **Applications** to extract and format the information will be available
Using QM tools

ICM QUALITY MANAGEMENT

Repair request for a TPG300
Actions ex: measurements
Problem found TPG300 replaced
Comment “NCR#9999999 initiated”
Close the case

Identity, History HCVRGPT300-CR000001
Request RP check on HCVRGPT300-CR000001
HCVRGPT300-CR000001 replaced by HCVRGPT300-CR000002
Status “For repair” HCVRGPT300-CR000001
Repaired (Jobs) Status “Stored”

Documents? NCR, procedures?
Chain? Hierarchy, Settings?

NCR#9999999 created and linked
NCR#9999999 closed
MTF link updated

VAC DB synchronization
PLC files
PVSS files

Wearsheets generated
Standardizations:

- **SCADA Data-Servers**: in 2012, migration from Windows to Linux & physically moved into the CCR building
- **SCADA application**:
 - updated from version 3.6 to 3.8
 - integrated and operational in the CCC (CERN Control Centre)
 - new functionalities incorporated (e.g. MOON by EN-ICE)
- **Tracking**:
 - Software Versioning service (SVN) used since 2012
 - all improvements & changes listed and sent to the users
 - most important actions described in detail and recorded in EDMS

Collaborations & Exchanges with:

- other Groups at CERN and outside Institutes
- **EN-ICE** (SCADA support)
- **BE-CO** (Data-Servers support)
- **IT security team** (“TN Disco test” held on March 2013)

Next Steps:

- SCADA to be upgraded to **WinCC®-OA 3.11**
- SCADA archiving to be moved to an external and independent **Oracle server**
- preparation to a full convergence towards the **CERN UNICOS framework**, tailored for vacuum (partnership between VSC-ICM, GSI and Cosylab, launched by EN-ICE)
2010 – 11
• QM-Plan: definition of the requirements
• Information: collection and centralization
• VAC-DB and SCADA: ergonomics & productivity improvements

2012 – 14
• Implementation: naming convention
• Tracking and information treatment: development and commissioning;
• Collect and update detailed information
• Extensive labelling of assets
• Modifications and consolidations
• Manpower peak

2015 – 17
• ICM QM in production
• Finalize structure
• Upload data to DBs (MTF & Layout & CCDB)
• Migrate VAC-DB to Layout-DB
• First version the VAC-UNICOS framework

2018
• LS2 (second LHC Long Shutdown): consolidation & upgrades
• Deploy and commission VAC-UNICOS framework on LHC and its injectors
• Manpower peak
Resources

The total: 230 men-month

Up to 3.5 FTE

Evolution of Manpower per Work package

Avg.: 2.7 FTE / year

Only technical aspects of the Project
The **human factor** is important:

- all the activities are concerned by Quality Management
- needs an **underlying attitude** and **philosophy of work**

Essential activities perceived as time-consuming/tedious:

- information retrieval & recording
- equipment labelling
- tracking of actions (detailed and accurate)

The **QM plan** may be **delayed** / compromised due to lack of:

- guidance
- motivation
- understanding
Conclusion

• Well advanced:
 ✓ Homogenization: Naming Convention, methods & tools
 ✓ Centralization of information: actions, documentation, devices settings
 ✓ Preservation of knowledge
 ✓ Simple but efficient to maintain system up-to-date

• Still to be done:
 • Labeling of assets (< 50 %)
 • Asset data importation into MTF (~70 %)
 • Definition of templates with keywords (NCRs, Jobs)
 • Definition of vacuum controllers in Layout DB
 • Renovation and definition in Controls Configuration DB

• Key points:
 • Common/standard applications already widely used/supported at CERN
 • Information availability, openness, transparency
 • According/Conforming to the CERN MMP recommendations

Everybody is involved in some way in aspects contributing to the improvement of QA
Thank you for your attention!

Contact: fabien.antonio@cern.ch

References:

- F. Antoniotti et al., “Developments on the SCADA of CERN Accelerators Vacuum”, EDMS#1317778, ICALEPCS13, S. Francisco, Oct-2013
- F. Antoniotti, “Quality Management Plan in Vacuum Controls section”, EDMS#1310709