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Introduction
We want to assess the systematics associated to known deficiencies in 
the statistical model being used directly by the statistical framework (ie. 
the RooFit/RooStats workspaces) and the full simulation and analysis 
recommendations used to describe the baseline model (aka Geant + 
some corrections and/or smearing).  

Full simulation + smearing + corrections:
‣ very slow, expensive to calculate

Parametrized statistical model 
‣ fast, approximates f(x|α), has known deficiencies 

where α=(μ,θ) includes both the parameters of interest μ and nuisance 
parameters θ. 
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1. Introduction

We want to assess the systematics associated to known deficiencies in the statisti-

cal model being used directly by the fitting framework (ie. the RooFit/RooStats

workspaces) and the full simulation and analysis recommendations used to describe

the baseline model (aka Geant + some corrections and/or smearing).

Let us take the “full simulation” model as f(x|↵) and the parametrized statistical

model g(x|↵), where ↵ = (µ, ✓) includes both the parameters of interest µ and

nuisance parameters ✓. Typically we make confidence intervals and inference on µ

by eliminating the nuisance parameters ✓ by marginalization or profiling. Let us focus

on the profiling approach, in which the asymptotic theory states that the distribution

of the profile likelihood ratio �(µ) follows Wilks f(�2 log �(µ)|µ, ✓) = �

2
dimµ when

evaluated at the true value and the more general result from Wald that when µ 6= µ

0

the distribution follows a non-central chi-squared distribution with non-centrality

parameter ⇤, viz. f(�2 log �(µ)|µ0
, ✓) = �

2
dimµ(⇤).

Ideally, the full simulation f(x|↵) could be used directly as a likelihood function,

but that is computationally intractable currently. Instead, we typically estimate

fi(x|↵i) with i in some a priori defined set of variations: typically one-at-a-time

evaluation of each component of ↵ by “1�”. We can take these as accurate estimates

of the simulation at those points. From these points we construct an interpolated or

parametrized estimate g(x|↵), which may or may not satisfy fi(x|↵i) = g(x|↵i). The

real problem is for all the points ↵ away from the sampled points, the interpolation

algorithm simply doesn’t have enough information to represent the full simulation

there. We can write generically that

f(x|↵) = g(x|↵) + e(x|↵), (1.1)

where e(x|↵) is the error in the g’s approximation of f , which should satisfy

Z
dx e(x|↵)dx = 0 8↵ (1.2)

so that f and g are both probability density functions.
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Design of experiments

Currently we are only probing our “response surface” (the 
acceptance as a function of nuisance parameter) 
changing one parameter at a time.

‣ full factorial experiments may not be feasible --> 
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Nesting non-nested models
Consider the mixture h of the non-nested models f and  g

Statement of the Problem:  How does one provide approximately 
calibrated confidence intervals in the parameter of interest µ for all 
values of θ when ε=1 is true, but the likelihood function can only be 
evaluated at ε=0?   

4

Before stating the problem, let us imagine an artificially merged family of prob-

ability density functions like those used for merging non-nested models. There are

two common approaches:

h(x|↵, ✏) = ✏f(x|↵) + (1� ✏)g(x|↵) (1.3)

and

h(x|↵, ✏) = f(x|↵)✏g(x|↵)(1�✏)
. (1.4)

The latter approach was preferred by Cox and others, because if f and g are both

in the exponential family, then so is h. For (perhaps temporary) technical reasons

described below, I will proceed with the first approach (the mixture) in which

h(x|↵, ✏ = 0) = g(x|↵) and h(x|↵, ✏ = 1) = f(x|↵). Note, these choices are related

to what Amari and the information geometry folks refer to as (exponentially) e-flat

and (mixture) m-flat, which involves some fairly technical di↵erential geometry.

Statement of the Problem: How does one provide approximately calibrated con-

fidence intervals in the parameter of interest µ for all values of ✓ when ✏ = 1 is true,

but the likelihood function can only be evaluated at ✏ = 0?

That is to say, how do we obtain intervals as if we were using f , even though

we only have access to g and perhaps severely limited access to f . Denote the

profile likelihood restricted g as: �g(µ) = g(x|µ, ˆ̂↵(µ))/g(x|µ̂, ↵̂(µ)), with the typical

notation for the conditional and unconditional maximum likelihood estimators. We

want:

f(�2 ln�g(µ)|µ, ✏ = 1, ✓) (1.5)

Approach: To approximate this, we can think of ✏ as an additional parameter of

interest where we test at (µ, ✏ = 0) and assume (µ, ✏ = 1) is true. We can use Wald’s

theorem for when the true and tested values are not equal

f(�2 ln�h(µ, ✏ = 0)|µ, ✏ = 1, ✓) = �

2
D(⇤) , (1.6)

where again we have a non-central chi-square1. There are two issues to explore: a)

how similar are �g(µ) and �h(µ, ✏ = 0), and b) how do we estimate the non-centrality

⇤?

The Fisher information matrix is defined by

Iij(µ, ✏, ✓) = E [@i log � @j log �|µ, ✏, ✓] , (1.7)

1
The number of degrees of freedom D, is normally the dimensionality of the parameters of

interest. If f and g are very similar, then number of e↵ective degrees of freedom may still be the

dimensionality of µ. In particular, if the variance of ✏̂ may be very large, then the asymptotic

convergence has not set in and we have an e↵ect more similar to the energy scale systematic

uncertainty that gave a mild “look-elsewhere” type modification to the distribution. Maybe that is

actually a better parametrization, but here we use simply that D = dimµ.
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We want

Instead consider

What is non-centrality parameter?
‣ can determine from Fisher information matrix

‣ but that requires being able to evaluate full simulation f(µ,θ)
‣ use relationship to Kullback-Leibler divergence:
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A picture
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Interval will grow from CIg to CI h+Λ
to approximate CIf
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Estimaing non-centrality parameter
Use relationship between KL-distance and integral of fisher information 
metric to approximate the non-centrality parameter

Requires running simulation at the best fit parameters from 
‣ one more full simulation run
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which has two important properties. First, it can be used to define a metric on the

space of the parameters, which implies geodesics and a natural distance measure

between ✏ = 0 and ✏ = 1. Secondly, when the asymptotics hold, the Fisher infor-

mation is a good estimate for the covariance of the parameters and can be used to

find the non-centrality parameter. For the one parameter case, the relationship is

⇤ = (✏� ✏

0)2/�2, where �

2 is the variance of ✏̂.2 Of course, we care about the cases

✏ = 0 and ✏

0 = 1, thus ⇤ = 1/� = I✏✏. We don’t have the variance of ✏̂ and we

don’t have immediate access to the Fisher information matrix. However, as long as

the Fisher information changes very little between ✏ 2 [0, 1], then we can approxi-

mate the the distance along the geodesic, DF , connecting the points µ, ✏ = 0, ↵̂ and

µ, ✏ = 1, ↵̂ with the line integral along the straight path (with fixed µ, ↵̂) connecting

those points

DF =

Z 1

0

dt

q
Iij(↵(t))↵̇i(t)↵̇j(t) ⇡

Z 1

0

d✏

p
I✏✏ =

p
I✏✏ , (1.8)

It is known that for close by distributions the Kullback-Leibler divergence via:
p

2KL(p||q) ! DF (1.9)

as p ! q and

KL(p||q) =
Z

dx p(x) ln
p(x)

q(x)
. (1.10)

Thus, we arrive at the main result

⇤ ⇡ 2

Z
dx f(x|µ, ✓̂) ln f(x|µ, ✓̂)

g(x|µ, ✓̂)
(1.11)

By evaluating f(x|µ, ✓̂) we can incorporate the systematic associated to imperfect

modeling.

Idea If we have the ability to evaluate f(x|µ, ✓̂), then we relate

�g(µ) =
g(x|µ, ˆ̂✓)
g(x|µ̂, ✓̂)

(1.12)

=
g(x|µ, ˆ̂✓)

h(x|µ, ✏̂, ˆ̂✓)

h(x|µ, ✏̂, ˆ̂✓)
g(x|µ̂, ✓̂)

(1.13)

= �h(µ̂, ✏ = 0)
h(x|µ̂, ✏̂, ˆ̂✓)
g(x|µ̂, ✓̂)

(1.14)

fix: will need h at both MLE and CMLE (1.15)

Recall that h(x|µ̂, ✏, ˆ̂✓) = ✏f(x|µ̂, ✓̂) + (1 � ✏)g(x|µ̂, ✓̂), so this one parameter family

can be easily optimized to find h(x|µ̂, ✏̂, ✓̂).
2
Maybe if ✏̂ is not very normal or the issue that non-convergence to the asymptotic distributions

is going to cause a problem, but let us proceed with the logic.
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which has two important properties. First, it can be used to define a metric on the

space of the parameters, which implies geodesics and a natural distance measure

between ✏ = 0 and ✏ = 1. Secondly, when the asymptotics hold, the Fisher infor-

mation is a good estimate for the covariance of the parameters and can be used to

find the non-centrality parameter. For the one parameter case, the relationship is

⇤ = (✏� ✏

0)2/�2, where �

2 is the variance of ✏̂.2 Of course, we care about the cases

✏ = 0 and ✏

0 = 1, thus ⇤ = 1/� = I✏✏. We don’t have the variance of ✏̂ and we

don’t have immediate access to the Fisher information matrix. However, as long as

the Fisher information changes very little between ✏ 2 [0, 1], then we can approxi-

mate the the distance along the geodesic, DF , connecting the points µ, ✏ = 0, ↵̂ and

µ, ✏ = 1, ↵̂ with the line integral along the straight path (with fixed µ, ↵̂) connecting

those points

DF =

Z 1

0

dt

q
Iij(↵(t))↵̇i(t)↵̇j(t) ⇡

Z 1

0

d✏

p
I✏✏ =

p
I✏✏ , (1.8)

It is known that for close by distributions the Kullback-Leibler divergence via:
p

2KL(p||q) ! DF (1.9)

as p ! q and

KL(p||q) =
Z

dx p(x) ln
p(x)

q(x)
. (1.10)

Thus, we arrive at the main result
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Z
dx f(x|µ, ✓̂) ln f(x|µ, ✓̂)

g(x|µ, ✓̂)
(1.11)

By evaluating f(x|µ, ✓̂) we can incorporate the systematic associated to imperfect

modeling.

Idea If we have the ability to evaluate f(x|µ, ✓̂), then we relate

�g(µ) =
g(x|µ, ˆ̂✓)
g(x|µ̂, ✓̂)
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h(x|µ, ✏̂, ˆ̂✓)

h(x|µ, ✏̂, ˆ̂✓)
g(x|µ̂, ✓̂)

(1.13)

= �h(µ̂, ✏ = 0)
h(x|µ̂, ✏̂, ˆ̂✓)
g(x|µ̂, ✓̂)

(1.14)

fix: will need h at both MLE and CMLE (1.15)

Recall that h(x|µ̂, ✏, ˆ̂✓) = ✏f(x|µ̂, ✓̂) + (1 � ✏)g(x|µ̂, ✓̂), so this one parameter family

can be easily optimized to find h(x|µ̂, ✏̂, ✓̂).
2
Maybe if ✏̂ is not very normal or the issue that non-convergence to the asymptotic distributions

is going to cause a problem, but let us proceed with the logic.

– 3 –

which has two important properties. First, it can be used to define a metric on the

space of the parameters, which implies geodesics and a natural distance measure

between ✏ = 0 and ✏ = 1. Secondly, when the asymptotics hold, the Fisher infor-

mation is a good estimate for the covariance of the parameters and can be used to

find the non-centrality parameter. For the one parameter case, the relationship is

⇤ = (✏� ✏

0)2/�2, where �

2 is the variance of ✏̂.2 Of course, we care about the cases

✏ = 0 and ✏

0 = 1, thus ⇤ = 1/� = I✏✏. We don’t have the variance of ✏̂ and we

don’t have immediate access to the Fisher information matrix. However, as long as

the Fisher information changes very little between ✏ 2 [0, 1], then we can approxi-

mate the the distance along the geodesic, DF , connecting the points µ, ✏ = 0, ↵̂ and

µ, ✏ = 1, ↵̂ with the line integral along the straight path (with fixed µ, ↵̂) connecting

those points

DF =

Z 1

0

dt

q
Iij(↵(t))↵̇i(t)↵̇j(t) ⇡

Z 1

0

d✏

p
I✏✏ =

p
I✏✏ , (1.8)

It is known that for close by distributions the Kullback-Leibler divergence via:
p

2KL(p||q) ! DF (1.9)

as p ! q and

KL(p||q) =
Z

dx p(x) ln
p(x)

q(x)
. (1.10)

Thus, we arrive at the main result

⇤ ⇡ 2

Z
dx f(x|µ, ✓̂) ln f(x|µ, ✓̂)

g(x|µ, ✓̂)
(1.11)

By evaluating f(x|µ, ✓̂) we can incorporate the systematic associated to imperfect

modeling.

Idea If we have the ability to evaluate f(x|µ, ✓̂), then we relate

�g(µ) =
g(x|µ, ˆ̂✓)
g(x|µ̂, ✓̂)

(1.12)

=
g(x|µ, ˆ̂✓)

h(x|µ, ✏̂, ˆ̂✓)

h(x|µ, ✏̂, ˆ̂✓)
g(x|µ̂, ✓̂)

(1.13)

= �h(µ̂, ✏ = 0)
h(x|µ̂, ✏̂, ˆ̂✓)
g(x|µ̂, ✓̂)

(1.14)

fix: will need h at both MLE and CMLE (1.15)

Recall that h(x|µ̂, ✏, ˆ̂✓) = ✏f(x|µ̂, ✓̂) + (1 � ✏)g(x|µ̂, ✓̂), so this one parameter family

can be easily optimized to find h(x|µ̂, ✏̂, ✓̂).
2
Maybe if ✏̂ is not very normal or the issue that non-convergence to the asymptotic distributions

is going to cause a problem, but let us proceed with the logic.

– 3 –

find the non-centrality parameter. For the one parameter case, the relationship is

⇤ = (✏� ✏

0)2/�2, where �

2 is the variance of ✏̂.2 Of course, we care about the cases

✏ = 0 and ✏

0 = 1, thus ⇤ = 1/� = I✏✏. We don’t have the variance of ✏̂ and we

don’t have immediate access to the Fisher information matrix. However, as long as

the Fisher information changes very little between ✏ 2 [0, 1], then we can approxi-

mate the the distance along the geodesic, DF , connecting the points µ, ✏ = 0, ↵̂ and
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0
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Iij(↵(t))↵̇i(t)↵̇j(t) ⇡

Z 1
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I✏✏ =

p
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It is known that for close by distributions the Kullback-Leibler divergence via:
p

2KL(p||q) ! DF (1.8)

as p ! q and

KL(p||q) =
Z

dx p(x) ln
p(x)

q(x)
. (1.9)

Thus, we arrive at the main result

⇤ ⇡ 2

Z
dx f(x|µ, ✓̂) ln f(x|µ, ✓̂)

g(x|µ, ✓̂)
(1.10)

By evaluating f(x|µ, ✓̂) we can incorporate the systematic associated to imperfect

modeling.

Idea If we have the ability to evaluate f(x|µ, ✓̂), then we relate

�g(µ) =
g(x|µ, ˆ̂✓)
g(x|µ̂, ✓̂)

(1.11)

=
g(x|µ, ˆ̂✓)

h(x|µ, ✏̂, ˆ̂✓)

h(x|µ, ✏̂, ˆ̂✓)
g(x|µ̂, ✓̂)

(1.12)

= �h(µ̂, ✏ = 0)
h(x|µ̂, ✏̂, ˆ̂✓)
g(x|µ̂, ✓̂)

(1.13)

fix: will need h at both MLE and CMLE (1.14)

Recall that h(x|µ̂, ✏, ˆ̂✓) = ✏f(x|µ̂, ✓̂) + (1 � ✏)g(x|µ̂, ✓̂), so this one parameter family

can be easily optimized to find h(x|µ̂, ✏̂, ✓̂).
Throughout this draft document there have been approximations regarding the

maximum likelihood estimators under h and under ff or g. Those di↵erences are

hopefully small, but not yet properly worked through in this document.
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When there are many factors, many experimental 
runs will be necessary, even without replication. For 
example, experimenting with 10 factors at two levels 
each produces 210=1024 combinations. At some 
point this becomes infeasible due to high cost or 
insufficient resources. In this case, fractional factorial 
designs may be used.

http://en.wikipedia.org/wiki/Fractional_factorial_designs
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