

ATLAS Discovery Experience

Aaron Armbruster

University of Michigan

On behalf of ATLAS

February 13, 2013

Outline

- Combination Procedure
- Asymptotic Limit Bands
- Low count $\hat{\mu}$ / Physical PDF
- P-Value Uncapping
- Asymmetric Uncertainty Handling

Combination Procedure

- Individual models (likelihoods, datasets, etc) provided by subgroups electronically via RooFit workspaces
- Start with the individual likelihoods $\mathcal{L}_i(\mu, \theta_i) = \mathcal{L}_i^0(\mu, \theta_i) \times \prod_i^{M_i} \mathcal{A}(\theta_i^j)$
 - μ is parameter of interest
 - θ_i are the set of nuisance parameters used in channel i
 - \mathcal{L}_i^0 is the main body of the likelihood (eg observable distribution)
 - $\mathcal{A}(\theta_i^j)$ are auxiliary constraints for each θ_i^j (eg unit gaussian)
- Build a combined likelihood $\mathcal{L}(\mu, \theta) = (\prod^{N} \mathcal{L}_{i}^{0}(\mu, \theta_{i})) \times (\prod^{M} \mathcal{A}(\theta^{j}))$
 - θ is now the set of all unique nuisance parameters
 - Some θ_i^j are shared between channels. This must be recognized to ensure proper correlation.

Combination Details

- At first (one or two combinations), ATLAS results were fully based on toys
- As model grew, these became impractical
 - \sim 570 nuisance parameters at time of discovery
 - $\sim\!\!310$ of these are due to MC stats, treated Barlow-Beeston style
- \sim 10-30 minutes per fit \rightarrow 20-60 minutes per toy
 - $\mathcal{O}(\text{millions})$ CPU hours to produce full result
- Large model gives many fit failures, leads to false toys in tails of distribution
 - Diagnostic tools used to ensure tail events were truly failures
 - p-values become falsely enhanced, gives conservative result
- This led us to use asymptotics for all results, validated with toy and Bayesian tests

Asymptotic Bands

Asymptotic Limit Bands

• When σ is μ -dependent, simple equation for limit bands fails

$$CLs(\mu_{up+N}) \equiv \alpha \approx (1 - \Phi(\frac{\mu_{up+N} - N\sigma_1}{\sigma_2})) / (\Phi(\frac{\mu_{up+N}}{\sigma_3} - \frac{\mu_{up+N} - N\sigma_1}{\sigma_2})))$$

$$\neq (1 - \Phi(\frac{\mu_{up+N} - N\sigma_1}{\sigma_2})) / (\Phi(N))$$

$$\Rightarrow \mu_{up+N} \neq \sigma \{ \Phi^{-1}[1 - \alpha \Phi(N)] + N \}$$
(1)

Asymptotic Limit Bands

• $\sigma \approx \frac{|\mu - \mu'|}{\sqrt{t_{\mu, A_{\mu'}}}}$ really involves two μ 's: μ and μ'

- To conceptualize, imagine the toy distribution $f(\hat{\mu}|\mu')$ from which σ can be extracted
 - μ' is the hypothesized value \sim median of the distribution
 - μ is the tested value from which you integrate to extract σ

- In result using toys, μ_{up} is found for each b-only toy by scanning test statistic until is crosses some calibrated threshold
 - Band is derived from the quantiles of the distribution of μ_{up}
- If asymptotic properties hold, there should be a one-to-one mapping between the quantiles of $f(\hat{\mu}|0)$ and $f(\mu_{up}|0)$
 - The N'th quantile of $f(\hat{\mu}|0)$, call it μ'_N , therefore characterizes the Asimov dataset for the N'th quantile expected limit

Using the N'th Quantile Asimov

- Construct five Asimov datasets, one for each N=-2,...,2
 - μ_N' found by scanning $\mu' = 0$ Asimov NLL to find $-2\log\lambda(\mu_N') = N^2$
 - Nuisance parameters $\hat{\theta}(\mu'_N)$ also taken from $\mu'=0$ Asimov fit when constructing μ'_N Asimov dataset
 - These Asimov datasets characterize quantiles of $f(\hat{\mu}|0)$ that we wish to map to $f(\mu_{up+N}|0)$
- Use each Asimov dataset to find the crossing ${\rm CLs}(\mu_{\rm up+N})=\alpha$
 - Implicit in the ${\rm CLs}(\mu_{\rm up+N})=\alpha$ is the mapping function to go from $f(\hat{\mu}|0)$ to $f(\mu_{up}|0)$

USING THE N'TH QUANTILE ASIMOV

Comparison

Comparison of expected upper limit band						
	Low systematics			High systematics		
Quantile	Old μ_{up}	Improved μ_{up}	Toy μ_{up}	Old μ_{up}	New μ_{up}	Toy μ_{up}
+2	1.27	1.34	1.32	1.27	2.78	2.82
+1	0.95	0.97	0.96	0.94	1.25	1.25
0	0.68	0.68	0.68	0.68	0.68	0.68
-1	0.49	0.48	0.48	0.49	0.42	0.42
-2	0.37	0.36	0.36	0.36	0.29	0.28

- New procedure reproduces toy results well
- Differences are especially striking when systematics are large
 - μ -dependence of σ is large in these cases, which is exactly the scenario the new method was designed to address

Low count $\hat{\mu}$ / Physical PDF

- In resonance models with low event counts like $H \rightarrow ZZ^{(*)} \rightarrow \ell\ell\ell\ell$, PDF can become negative when fitting signal with no observed events
- Issue is mostly technical
 - Likelihood only evaluated on data points
 - Difficult to check PDF is physical everywhere in a general way

- "Ghost events" with zero weight can be added around signal peak to force RooFit to check if PDF is negative
- This causes the familiar wall in the $\hat{\mu}$ plot on the right

-
$$\hat{\mu}_{\min} \approx -\frac{B(x_{\text{peak}})}{S(x_{\text{peak}})}$$

P-Value Uncapping

- Classically, CLs \rightarrow 1 continuously as Q $\rightarrow -\infty$
- Condition $\tilde{q}_{\mu} = 0$ for $\hat{\mu} > \mu$ leads to $\delta(\tilde{q}_{\mu})$ in $f(\tilde{q}_{\mu}|\mu')$ that breaks this
 - Similar issue for q_0 when $\hat{\mu} < 0$
- \tilde{q}_{μ} , q_0 can be redefined to reveal structure of excesses and deficits

Example

Redefining \tilde{q}_{μ}

• We can gain back information lost in $\delta(\tilde{q}_{\mu})$ by defining a new test stat \tilde{r}_{μ}

$$\begin{split} \tilde{r}_{\mu} &= \begin{cases} +(-2\ln\lambda(0)) & \hat{\mu} \leq 0 & (same) \\ +(-2\ln\lambda(\mu)) & 0 < \hat{\mu} < \mu & (same) \\ -(-2\ln\lambda(\mu)) & \hat{\mu} \geq \mu & (new!) \end{cases} \\ F(\tilde{r}_{\mu}|\mu') &= \begin{cases} \Phi(\frac{\tilde{r}_{\mu} - (\mu^2 - 2\mu\mu')/\sigma^2}{2\mu/\sigma}) & \frac{\mu^2}{\sigma^2} \leq \tilde{r}_{\mu} & (same) \\ \Phi(\sqrt{\tilde{r}_{\mu}} + \frac{\mu - \mu'}{\sigma}) & 0 < \tilde{r}_{\mu} < \frac{\mu^2}{\sigma^2} & (same) \\ \Phi(-\sqrt{-\tilde{r}_{\mu}} + \frac{\mu - \mu'}{\sigma}) & \tilde{r}_{\mu} \leq 0 & (new!) \end{cases} \end{split}$$

- Identical for expected p-values and observed cases of $\hat{\mu} < \mu$

- As expected, behavior is identical for $\hat{\mu} < 1$
- For $\hat{\mu} > 1$, the new CDF kicks in and the CLs=0.5 cap is broken

Redefining q_0

• r_0 can be defined similar to \tilde{r}_{μ}

$$r_{0} = \begin{cases} +(-2\ln\lambda(\mu)) & \hat{\mu} > 0 \quad (same) \\ -(-2\ln\lambda(\mu)) & \hat{\mu} \le 0 \quad (new!) \end{cases}$$
$$F(r_{0}|\mu') = \begin{cases} \Phi(\sqrt{r_{0}} - \frac{\mu'}{\sigma}) & r_{0} > 0 \quad (same) \\ \Phi(-\sqrt{-r_{0}} - \frac{\mu'}{\sigma}) & r_{0} \le 0 \quad (new!) \end{cases}$$

• Identical for expected p-values and observed cases of $\hat{\mu} > 0$

- Ghost events come back to haunt us!
- To deal with the physical PDF issue, ghost events would have to be added to each toy in the ensemble
 - This will break the asymptoticity of r_0 toys if not dealt with

- p_0 with toys for ATLAS combination courtesy of Tim Adye
 - Negative r_0 toy distribution deviates from asymptotics
 - $\hat{\mu}$ goes more negative than it should, leading to larger r_0 values
- Physical pdf isn't explicitely required within RooFit toys
- NB: Asymptotics can be taught about physical pdf
 - Difficult to do in a model independent way for toys

Asymmetric Uncertainties / NP Distributions

Asymmetric Uncertainties

- Systematics are treated as lognormally distributed
 - For a normally distributed nuisance parameter $\theta,\,\nu(\theta)\equiv\kappa^\theta$ is lognormally distributed
 - $\nu(\theta)$ multiplies our expected rates: $B(\theta) = B_0 \nu(\theta)$
- κ determined by calculating $\nu(\theta)$ at $\theta=\pm 1$
 - Eg, vary JES by $\pm 1\sigma$ and look at effect on background
 - Leads to two values of κ : $\kappa_{\pm}=\nu(\pm 1)$
 - If $\kappa_+ \neq \kappa_-$, uncertainty is asymmetric
- Asymmetric uncertainties were at first handled by bifurcating $u(\theta)$

$$\nu(\theta) = \begin{cases} \kappa_{+}^{\theta}, & \theta \ge 0\\ \kappa_{-}^{\theta}, & \theta < 0 \end{cases}$$
(2)

- Look at posterior distribution of maximum likelihood estimators $\hat{\theta}$
- Bifurcation leads to unphysical delta function in distribution
 - This causes kink in likelihood vs θ and a discontinuous first derivative
 - Instabilities in Minuit cause delta at $\theta=0$

Response Function Interpolation

- Introduce a polynomial function in the transition region
 - A 6D polynomial is required to satisfy ν , $\frac{d\nu}{d\theta}$, $\frac{d^2\nu}{d\sigma^2}$ continuity
- Embed the transition function in some range $(-X_0, +X_0)$ (nominally (-1,1))

$$\nu(\theta) = \begin{cases} \kappa_{+}^{\theta}, & \theta \ge X_{0} \\ 1 + \sum_{i=1}^{6} a_{i}\theta^{i}, & -X_{0} < \theta < X_{0} \\ \kappa_{-}^{\theta}, & X \le -X_{0} \end{cases}$$

• a_i determined by requiring continuity up to the second derivative at the boundaries $-X_0, +X_0$

Response Function Comparison

RESPONSE FUNCTION COMPARISON

• Delta function is removed and θ returns to its proper gaussian distribution

Summary

- Several statistics and modelling issues addressed in last two years during Higgs search
 - These became apparent as model matured and as we learned to develop tools to understand our results
 - Typically developed out of necessesity during conference rush
 - PDF physicality, asymmetric systematic handling
- Asymptotic methods have grown to better approximate toy results
 - Band formulation, uncapping