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Outline

e Combination Procedure

Asymptotic Limit Bands

e Low count i / Physical PDF
e P-Value Uncapping

e Asymmetric Uncertainty Handling
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Combination Procedure

e Individual models (likelinoods, datasets, efc) provided by subgroups
electronically via RooFit workspaces
M;
e Start with the individual likelihoods £;(u, 0;) = L3 (i, 6;) x H A(67)
- u is parameter of interest j
- 6, are the set of nuisance parameters used in channel ¢
- £ is the main body of the likelihood (eg observable distribution)

- A(6?) are auxiliary constraints for each 67 (eg unit gaussian)
N M
e Build a combined likelihood £(u, 0) = (] | £7(n,0:)) x (] | A(6%))
i j

- 6 is now the set of all unigue Nnuisance parameters

- Some ¢’ are shared between channels. This must be recognized to
ensure proper correlation.

COMBINATION PROCEDURE 3. FEBRUARY 13,2013



n>r->

UNIVERSITY OF MICHIGAN AARON ARMBRUSTER

Combination Details

e AT first (one or two combinations), ATLAS results were fully based on toys

e As model grew, these became impractical
- ~570 nuisance parameters at time of discovery

- ~310 of these are due to MC stats, treated Barlow-Beeston style

e ~10-30 minutes per fit—20-60 minutes per toy
— O(millions) CPU hours to produce full result
e Large model gives many fit failures, leads to false toys in fails of
distribution
- Diagnostic tools used to ensure tail events were truly failures
- p-values become falsely enhanced, gives conservative result

e This led us to use asymptotics for all results, validated with foy and
Bayesian tests

COMBINATION DETAILS 4, FEBRUARY 13,2013
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Asymptotic Bands

ASYMPTOTIC BANDS 5. FEBRUARY 13,2013
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Asymptotic Limit Bands

e When o is p-dependent, simple equation for limit bands fails

CLs(upsn) = a & (1— (Ruesd=Noly) ey _ upey —Non )
U —No
# (1= o(=—="2))/ (R(N))
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ASYMPTOTIC LIMIT BANDS 6. FEBRUARY 13,2013
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Estimating ¢
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o o~ =L reqlly involves two u’s: ©and u/

e To conceptualize, imagine the toy distribution f(ii|u") from which ¢ can
be extracted

- 1’ is the hypothesized value ~ median of the distribution

- 1 Is the fested value from which you integrate to extract o

ESTIMATING o 7. FEBRUARY 13,2013
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Mapping
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e [N result using toys, ., is found for each b-only toy by scanning ftest
statistic unfil is crosses some calibrated threshold

- Band is derived from the quantiles of the distribution of iy,
e |f asymptotic propertfies hold, there should be a one-to-one mapping
between the quantiles of f(2|0) and f(up|0)

- The N'th quantile of f(i]|0), call it i)y, therefore characterizes the
Asimov dataset for the N'th quantile expected limit

MAPPING 8. FEBRUARY 13,2013
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Using the N’th Quantile Asimov

e Construct five Asimov datasets, one for each N=-2,...,2
- 1y found by scanning 1/ = 0 Asimov NLL to find —2log A(uy) = N?

- Nuisance parameters §(u/y) also taken from p' = 0 Asimov fit when
constructing p'xy Asimov dataset

- These Asimov datasets characterize quantiles of f(|0) that we wish
to map to f(uup+n|0)
e Use each Asimov dataset to find the crossing CLs(pup+n) = @

- Implicit in the CLs(puwp+n) = a is the mapping function to go from
f(£2]0) 1O f (ptup|0)

USING THE N'TH QUANTILE ASIMOV 9. FEBRUARY 13, 2013
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Comparison of expected upper limit band

Low systematics High systematics
Quantile | Old pyy, | Improved iy | TOY pup || Old pup | NEeW pyp | TOY prup
+2 1.27 1.34 1.32 1.27 2.78 2.82
+1 0.95 0.97 0.96 0.94 1.25 1.25
0 0.68 0.68 0.68 0.68 0.68 0.68
-1 0.49 0.48 0.48 0.49 0.42 0.42
-2 0.37 0.36 0.36 0.36 0.29 0.28

e New procedure reproduces toy results well

e Differences are especially striking when systematics are large

- u-dependence of ¢ is large in these cases, which is exactly the
scenario the new method was designed to address

COMPARISON 10. FEBRUARY 13,2013
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Low count /; / Physical PDF

LOW COUNT 4 / PHYSICAL PDF 11. FEBRUARY 13, 2013



)
ny»r-=p»

UNIVERSITY OF MICHIGAN

AARON ARMBRUSTER

Low count /i / Physical PDF

(Plot c.0. Sven Kreiss)

W CVCW"’J'

Sl.‘hl.( my = '3G Gt,/
Si\"at MH = /¢Z GeV

BQCLgrOMd
v, m

e In resonance models with low event counts like H — ZZ*) — ¢¢ee, PDF
can become negatfive when fitting signal with no observed events

e Issue is mostly fechnical

- Likelihood only evaluated on data points

— Difficult to check PDF is physical everywhere in a general way

LOW COUNT 4 / PHYSICAL PDF 12.

FEBRUARY 13, 2013
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Low count /; / Physical PDF

0
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"Ghost events" with zero weight H my, [GeV]

e "Ghost events” with zero weight can be added around signal peak to
force RooFit to check if PDF is negaftive

e This causes the familiar wall in the i plot on the right

B(xpeak>

~ Hmin ~ 7 S(xpeak)

LOW COUNT 4 / PHYSICAL PDF 13. FEBRUARY 13, 2013
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P-Value Uncapping

P-VALUE UNCAPPING 14, FEBRUARY 13,2013
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P-Value Uncapping
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e Classically, CLs—1 continuously as Q— —oo

e Condition g, = 0 for i > pleads to §(q,) in f(q.|n") that breaks this

- Similar issue for go when i < 0

® §,.,qo Can be redefined to reveal sfructure of excesses and deficits

P-VALUE UNCAPPING 15. FEBRUARY 13, 2013



ner-»

UNIVERSITY OF MICHIGAN

AARON ARMBRUSTER

R e N S I S R R RS R R o L SRS IR L UL B U RN I
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EXAMPLE 16. FEBRUARY 13, 2013
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Redefining ¢,

10t 4 10t 3

F—iF1]D) E F —fF_01]0.1)
102 —f(F_1/0) - 10% —f(F_0.1]0)

10° - 10°E

104 10 E

10° I 10°

({ |V T I | I e V| 2 el
-15 -10 -5 0 5 10 -18 -16 -14 -12 -10 -8 6 -4 -2 O
1 701

e \We can gain back information lost in §(g,,) by defining a new tfest stat 7,

)
+(—21In A(0)) <0 (same)
Tn =14 +(=2InA(p)) O0<i<p (same)
| (2 A(w)  pzp (new!)
( ~ /
@(T“_(“Z;?Z“ )/02) ’;—2 < T (same)
F(rup') = 3 CD(«/@—I—“’;“’/) 0<r, < ’;—2 (same)
A Vo 1 z !
\ O(—y/—Tu + =) 7, <0 (new!)

e |denfical for expected p-values and observed cases of 1 < u

REDEFINING ¢, 17. FEBRUARY 13, 2013
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Comparison
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e As expected, behavior is identfical for i < 1

e For i > 1,the new CDF kicks in and the CLs=0.5 cap is broken

COMPARISON 18. FEBRUARY 13,2013
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Redefining ¢
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e 1o Can be defined similar to r,
+(=2InA(w)  A>0 (same)

0T —(—=2InA(p)) p<0 (new!)
F(ro| ') = ®(\/ro — &) ro >0 (same)

O(—+/—ro — “7/) ro <0 (new!)

e |denfical for expected p-values and observed cases of i > 0

REDEFINING qq 19. FEBRUARY 13, 2013
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Physical PDF issues
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e Ghost events come back to haunt us!

e To dedl with the physical PDF issue, ghost events would have o be
added to each toy in the ensemble

- This will break the asymptoficity of rq tfoys if not dealt with

PHYSICAL PDF ISSUES 20. FEBRUARY 13,2013
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Practical example

Profile Likelihood Ratio at 135 GeV

—— @, (unde lows in 1st bin;
— test statistic data
—— %*(1) over q |

Local P-Value
o
()]

10°E

i 0.5 E- —e— Combined observed fromtoys Lt = 1.0-4.9 f"
F  —=— Combined observed asymptotic ¢ _ 7 1oy

5 = -- ‘ Combinec‘j expected a‘symptoﬁc | | | | A .
10410 115 120 125 130 135 140 145 150
m, [GeV]

e po Wwith toys for ATLAS combination courtesy of Tim Adye
- Negative rqo toy distribution deviates from asymptofics
- (1 goes more negative than it should, leading to larger ro values

e Physical pdf isn’t explicitely required within RooFit toys

e NB: Asymptotics can be taught about physical pdf
- Difficult fo do in a model independent way for toys

PRACTICAL EXAMPLE 21. FEBRUARY 13,2013
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Asymmetric Uncertainties / NP Distributions

ASYMMETRIC UNCERTAINTIES / NP DISTRIBUTIONS 22. FEBRUARY 13,2013
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Asymmetric Uncertainties

e Systematics are treated as lognormally distributed

- For a normally distributed nuisance parameter 6, v(8) = x is
lognormally distributed

- v(0) multiplies our expected rates: B(0) = Bov(0)
e x determined by calculating v(0) af § = +1

- Eg, vary JES by +10 and look at effect on background
- Leads fo two values of k: k+ = v(+1)

- If k4 # k_, uncertainty is asymmetric

e Asymmefric uncertaintfies were at first handled by bifurcating v(6)

°, 6>0
l/(e): { oot o (2)
0

k., 0<0

ASYMMETRIC UNCERTAINTIES 23. FEBRUARY 13,2013
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Asymmetric Uncertainties

[h_NP !....

Number of toy
H
N
o

o
do-l-\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\l\\#
w_

Profiled NP

e Look at posterior distribution of maximum likelihood estimators 6

e Bifurcation leads to unphysical delta function in distribution
— This causes kink in likelihood vs 8 and a discontinuous first derivative

- Instabilities in Minuit cause delta at 8 =0

ASYMMETRIC UNCERTAINTIES 24, FEBRUARY 13,2013
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Response Function Interpolation

e Infroduce a polynomial function in the transition region

dv

- A 6D polynomial is required o satisfy v, 2,

d? i
2—5 confinuity

e Embed the transition function in some range (—Xo, +Xo) (nominally
1,1

Ri’ 0 2 Xo

6
I/(Q) =< 1+ Zazﬂi, —Xo <0< Xy
=1

. X< -Xo

\ Y
e a; defermined by requiring continuity up to the second derivative at the
boundaries —Xo, +Xo

RESPONSE FUNCTION INTERPOLATION 25, FEBRUARY 13,2013
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Response Function Comparison
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RESPONSE FUNCTION COMPARISON 26. FEBRUARY 13,2013
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>
Z
5
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50

Number of toy:

40

30

z =-0.0818
20
o =0.886
10
param = 3
O R ST T T R T S R ST S B . .
-3 -2 -1 0 1 2 3
Profiled NP

e Delfa function is removed and 6 returns to its proper gaussian distribution

RESULT 27. FEBRUARY 13,2013
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Summary

e Several stafistics and modelling issues addressed in last two years during
Higgs search

- These became apparent as model matured and as we learned to
develop tools to understand our resulfs

- Typically developed out of necessesity during conference rush

— PDF physicality, asymmetric systematic handling

e Asymptotic methods have grown to better approximate toy results

- Band formulation, uncapping

SUMMARY 28. FEBRUARY 13,2013



