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Outline

• Combination Procedure

• Asymptotic Limit Bands

• Low count µ̂ / Physical PDF

• P-Value Uncapping

• Asymmetric Uncertainty Handling

OUTLINE 2. FEBRUARY 13, 2013



AARON ARMBRUSTER

Combination Procedure

• Individual models (likelihoods, datasets, etc) provided by subgroups
electronically via RooFit workspaces

• Start with the individual likelihoods Li(µ, θi) = L0
i (µ, θi) ×

Mi
∏

j

A(θj
i )

– µ is parameter of interest

– θi are the set of nuisance parameters used in channel i

– L0
i is the main body of the likelihood (eg observable distribution)

– A(θj
i ) are auxiliary constraints for each θj

i (eg unit gaussian)

• Build a combined likelihood L(µ, θ) = (

N
∏

i

L0
i (µ, θi)) × (

M
∏

j

A(θj))

– θ is now the set of all unique nuisance parameters

– Some θj
i are shared between channels. This must be recognized to

ensure proper correlation.
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Combination Details

• At first (one or two combinations), ATLAS results were fully based on toys

• As model grew, these became impractical
– ∼570 nuisance parameters at time of discovery
– ∼310 of these are due to MC stats, treated Barlow-Beeston style

• ∼10-30 minutes per fit→20-60 minutes per toy
– O(millions) CPU hours to produce full result

• Large model gives many fit failures, leads to false toys in tails of
distribution

– Diagnostic tools used to ensure tail events were truly failures

– p-values become falsely enhanced, gives conservative result

• This led us to use asymptotics for all results, validated with toy and
Bayesian tests

COMBINATION DETAILS 4. FEBRUARY 13, 2013



AARON ARMBRUSTER

Asymptotic Bands

ASYMPTOTIC BANDS 5. FEBRUARY 13, 2013
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Asymptotic Limit Bands

• When σ is µ-dependent, simple equation for limit bands fails

CLs(µup+N) ≡ α ≈ (1 − Φ(
µup+N−Nσ1

σ2
))/(Φ(

µup+N

σ3
− µup+N−Nσ1

σ2
))

6= (1 − Φ(
µup+N−Nσ1

σ2
))/(Φ(N))

⇒ µup+N 6= σ{Φ−1[1 − αΦ(N)] + N}
(1)
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Estimating σ
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• σ ≈ |µ−µ′|
√

tµ,A
µ′

really involves two µ’s: µ and µ′

• To conceptualize, imagine the toy distribution f(µ̂|µ′) from which σ can

be extracted

– µ′ is the hypothesized value ∼median of the distribution
– µ is the tested value from which you integrate to extract σ
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Mapping
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• In result using toys, µup is found for each b-only toy by scanning test

statistic until is crosses some calibrated threshold

– Band is derived from the quantiles of the distribution of µup

• If asymptotic properties hold, there should be a one-to-one mapping
between the quantiles of f(µ̂|0) and f(µup|0)

– The N’th quantile of f(µ̂|0), call it µ′
N , therefore characterizes the

Asimov dataset for the N’th quantile expected limit
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Using the N’th Quantile Asimov

• Construct five Asimov datasets, one for each N=-2,...,2
– µ′

N found by scanning µ′ = 0 Asimov NLL to find −2 log λ(µ′
N ) = N2

– Nuisance parameters θ̂(µ′
N ) also taken from µ′ = 0 Asimov fit when

constructing µ′
N Asimov dataset

– These Asimov datasets characterize quantiles of f(µ̂|0) that we wish

to map to f(µup+N |0)

• Use each Asimov dataset to find the crossing CLs(µup+N) = α

– Implicit in the CLs(µup+N) = α is the mapping function to go from

f(µ̂|0) to f(µup|0)

USING THE N’TH QUANTILE ASIMOV 9. FEBRUARY 13, 2013
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Comparison

Comparison of expected upper limit band

Low systematics High systematics

Quantile Old µup Improved µup Toy µup Old µup New µup Toy µup

+2 1.27 1.34 1.32 1.27 2.78 2.82

+1 0.95 0.97 0.96 0.94 1.25 1.25

0 0.68 0.68 0.68 0.68 0.68 0.68

-1 0.49 0.48 0.48 0.49 0.42 0.42

-2 0.37 0.36 0.36 0.36 0.29 0.28

• New procedure reproduces toy results well

• Differences are especially striking when systematics are large
– µ-dependence of σ is large in these cases, which is exactly the

scenario the new method was designed to address
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Low count µ̂ / Physical PDF

LOW COUNT µ̂ / PHYSICAL PDF 11. FEBRUARY 13, 2013
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Low count µ̂ / Physical PDF

• In resonance models with low event counts like H → ZZ(∗) → ℓℓℓℓ, PDF

can become negative when fitting signal with no observed events

• Issue is mostly technical
– Likelihood only evaluated on data points

– Difficult to check PDF is physical everywhere in a general way

LOW COUNT µ̂ / PHYSICAL PDF 12. FEBRUARY 13, 2013
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Low count µ̂ / Physical PDF

• “Ghost events” with zero weight can be added around signal peak to
force RooFit to check if PDF is negative

• This causes the familiar wall in the µ̂ plot on the right

– µ̂min ≈ −B(xpeak)

S(xpeak)

LOW COUNT µ̂ / PHYSICAL PDF 13. FEBRUARY 13, 2013



AARON ARMBRUSTER

P-Value Uncapping

P-VALUE UNCAPPING 14. FEBRUARY 13, 2013
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P-Value Uncapping

_1q~
0 1 2 3 4 5 6 7 8 9 10

-410

-310

-210

-110

1
_1 | 1)q~f(
_1 | 0)q~f(

• Classically, CLs→1 continuously as Q→ −∞

• Condition q̃µ = 0 for µ̂ > µ leads to δ(q̃µ) in f(q̃µ|µ′) that breaks this

– Similar issue for q0 when µ̂ < 0

• q̃µ, q0 can be redefined to reveal structure of excesses and deficits
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Example
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Redefining q̃µ
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• We can gain back information lost in δ(q̃µ) by defining a new test stat r̃µ

r̃µ =















+(−2 ln λ(0)) µ̂ ≤ 0 (same)

+(−2 ln λ(µ)) 0 < µ̂ < µ (same)

−(−2 ln λ(µ)) µ̂ ≥ µ (new!)

F (r̃µ|µ′) =















Φ(
r̃µ−(µ2−2µµ′)/σ2

2µ/σ
) µ2

σ2 ≤ r̃µ (same)

Φ(
√

r̃µ + µ−µ′

σ
) 0 < r̃µ < µ2

σ2 (same)

Φ(−
√

−r̃µ + µ−µ′

σ
) r̃µ ≤ 0 (new!)

• Identical for expected p-values and observed cases of µ̂ < µ

REDEFINING q̃µ 17. FEBRUARY 13, 2013
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Comparison
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• As expected, behavior is identical for µ̂ < 1

• For µ̂ > 1, the new CDF kicks in and the CLs=0.5 cap is broken
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Redefining q0
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• r0 can be defined similar to r̃µ

r0 =

{

+(−2 ln λ(µ)) µ̂ > 0 (same)

−(−2 ln λ(µ)) µ̂ ≤ 0 (new!)

F (r0|µ′) =

{

Φ(
√

r0 − µ′

σ
) r0 > 0 (same)

Φ(−√−r0 − µ′

σ
) r0 ≤ 0 (new!)

• Identical for expected p-values and observed cases of µ̂ > 0
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Physical PDF issues

• Ghost events come back to haunt us!

• To deal with the physical PDF issue, ghost events would have to be
added to each toy in the ensemble

– This will break the asymptoticity of r0 toys if not dealt with

PHYSICAL PDF ISSUES 20. FEBRUARY 13, 2013
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Practical example

• p0 with toys for ATLAS combination courtesy of Tim Adye

– Negative r0 toy distribution deviates from asymptotics

– µ̂ goes more negative than it should, leading to larger r0 values

• Physical pdf isn’t explicitely required within RooFit toys

• NB: Asymptotics can be taught about physical pdf
– Difficult to do in a model independent way for toys

PRACTICAL EXAMPLE 21. FEBRUARY 13, 2013
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Asymmetric Uncertainties / NP Distributions

ASYMMETRIC UNCERTAINTIES / NP DISTRIBUTIONS 22. FEBRUARY 13, 2013
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Asymmetric Uncertainties

• Systematics are treated as lognormally distributed
– For a normally distributed nuisance parameter θ, ν(θ) ≡ κθ is

lognormally distributed

– ν(θ)multiplies our expected rates: B(θ) = B0ν(θ)

• κ determined by calculating ν(θ) at θ = ±1

– Eg, vary JES by ±1σ and look at effect on background

– Leads to two values of κ: κ± = ν(±1)

– If κ+ 6= κ−, uncertainty is asymmetric

• Asymmetric uncertainties were at first handled by bifurcating ν(θ)

ν(θ) =

{

κθ
+, θ ≥ 0

κθ
−, θ < 0

(2)

ASYMMETRIC UNCERTAINTIES 23. FEBRUARY 13, 2013
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Asymmetric Uncertainties
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• Look at posterior distribution of maximum likelihood estimators θ̂

• Bifurcation leads to unphysical delta function in distribution
– This causes kink in likelihood vs θ and a discontinuous first derivative

– Instabilities in Minuit cause delta at θ = 0

ASYMMETRIC UNCERTAINTIES 24. FEBRUARY 13, 2013
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Response Function Interpolation

• Introduce a polynomial function in the transition region
– A 6D polynomial is required to satisfy ν, dν

dθ
, d2ν

dσ2 continuity

• Embed the transition function in some range (−X0, +X0) (nominally

(-1,1))

ν(θ) =























κθ
+, θ ≥ X0

1 +

6
∑

i=1

aiθ
i, −X0 < θ < X0

κθ
−, X ≤ −X0

• ai determined by requiring continuity up to the second derivative at the

boundaries −X0, +X0

RESPONSE FUNCTION INTERPOLATION 25. FEBRUARY 13, 2013
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Response Function Comparison
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Result
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• Delta function is removed and θ returns to its proper gaussian distribution

RESULT 27. FEBRUARY 13, 2013
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Summary

• Several statistics and modelling issues addressed in last two years during
Higgs search

– These became apparent as model matured and as we learned to

develop tools to understand our results

– Typically developed out of necessesity during conference rush

– PDF physicality, asymmetric systematic handling

• Asymptotic methods have grown to better approximate toy results
– Band formulation, uncapping

SUMMARY 28. FEBRUARY 13, 2013


