Mign (MH) (1+0(55))

L (4, b) =

parabolene dis smallere med mer data

Various statistical issues

14.02.2013 Statistics miniworkshop, CERN A. Read (U. Oslo)

The Research Council

of Norway

UiO : University of Oslo

Background parameterization
Look elsewhere, empirical study
Uncapping revisited
Energy scale systematics revisited
Importance sampling

Parameterized background model e.g. ATLAS H-> $\gamma \gamma$ search

9 categories of unbinned likelihood

Name	Criteria				
CP1	unconverted	central	$\mathrm{low}\; p_{\mathrm{Tt}}$		
CP2	unconverted	central	high p_{Tt}		
CP3	unconverted	non-central	low \mathbf{p}_{Tt}		
CP4	unconverted	non-central	high p_{Tt}		
CP5	converted	central	low p _{Tt}		
CP6	converted	central	high $p_{\rm Tt}$		
CP7	converted	non-central	low \mathbf{p}_{Tt}		
CP7 CP8	$\operatorname{converted}$	non-central	$\begin{array}{l} low \ p_{\mathrm{Tt}} \\ high \ p_{\mathrm{Tt}} \end{array}$		

Parameterized signal model from fits to MC

Background model: <u>selected</u> functions with unconstrained nuisance parameters

Various terms in L

event in

$$\mathcal{L}_c(\mu, oldsymbol{ heta}_c) = e^{-N_c} \prod_{n=1}^{N_c} \mathcal{L}_{c,n}(m_{\gamma\gamma}(n); \mu, oldsymbol{ heta}_c)$$
 L per event is a category

$$egin{aligned} \mathcal{L}_{c,n}(m_{\gamma\gamma}(n);\mu,m{ heta}_c) &= & N_{s,c}(\mu,m{ heta}_c^{norm})f_{s,c}(m_{\gamma\gamma};m{ heta}_c^{shape}) \ \mathbf{Mass\ distribution} + & N_{bkg,c}f_{bkg,c}(m_{\gamma\gamma};m{ heta}_c^{bkg}) \ , \end{aligned}$$

Distinguish signal from spurious signal

6

Model tests (on MC)

- 9 categories
- No CPU time for full simulation
- 3 MC generators, don't expect them to perfectly reproduce the background data
- Select parameterizations which can incorporate shape uncertainty in unconstrained nuisance parameters without producing false signals

BG model selection

Category	Function	$\begin{array}{l} {\rm Max} \left {{\rm S}_{SP}} \right \\ \left({{\rm m_H}[{\rm GeV}]} \right) \end{array}$	$\%\sqrt{S}\left(N_S ight)$	$\%\sigma_{0}\left(\sigma_{0} ight)$	σ^{N_S}	$\sigma^{S_{SP}}$	Pass	Passall
CP1	Exp	-4.7 (126)	-45 (11)	-35 (14)	0.78	-0.35		
CP1	Epoly2	2.1 (117)	18 (12)	13 (16)	0.70	0.13	1	<
CP2	Exp	-0.23 (110)	-15 (1.5)	-6.4 (3.5)	0.43	-0.064	~	×
CP3	Exp	12 (117)	50 (23)	35 (33)	0.71	0.35		
CP3	Epoly2	9.2 (112)	41 (23)	26 (36)	0.64	0.26		
CP3	Epoly3	3.4 (111)	15 (22)	8.8 (38)	0.59	0.088	1	1
CP3	Bern3	5.8 (111)	26 (22)	16 (36)	0.62	0.16		
CP3	Bern4	2.8 (111)	13 (22)	7.1 (40)	0.56	0.071	1	<
CP4	Exp	0.5 (132)	19 (2.6)	7.2 (6.9)	0.38	0.072	1	<
CP5	Exp	-4.4 (126)	-64 (6.8)	-34 (13)	0.54	-0.34		
CP5	Epoly2	1.6 (117)	22 (7.4)	10 (16)	0.47	0.10	1	<
CP6	Exp	-0.27 (110)	-27 (0.98)	-8.0 (3.4)	0.29	-0.080	~	× -
CP7	Exp	6.5 (122)	29 (22)	18 (37)	0.60	0.17		
CP7	Epoly2	5.8 (122)	26 (22)	14 (40)	0.56	0.14		
CP7	Epoly3	-6.3 (110)	-29 (22)	-13 (48)	0.46	-0.13	1	1
CP7	Bern3	-6.3 (110)	-29 (22)	-14 (46)	0.47	-0.14	1	×
CP7	Bern4	-4.5 (110)	-20 (22)	-8.8 (50)	0.43	-0.088	1	<
CP8	Exp	0.45 (134)	18 (2.5)	5.7 (7.9)	0.32	0.057	<	×
CP9	Exp	-16 (130)	-179 (9.1)	-59 (28)	0.33	-0.59		
CP9	Epoly2	-3.2 (110)	-33 (9.9)	-8.3 (39)	0.26	-0.083	~	× -

•	the	exponential	function
-	0110	onpononteren	TOTAL OCTOR

$$Ne^{-\beta m_{\gamma\gamma}}$$
, (8.25)

where N and β were the fitted parameters – the normalization and slope of the exponential, respectively;

• the exponential polynomial of order n (orders 2 and 3 were used)

e

$$\sum_{i=0}^{n} \beta_i m_{\gamma\gamma}^i , \qquad (8.26)$$

where β_i were the fitted parameters. Note that the latter *i* is not an index, but the power $m_{\gamma\gamma}$ is raised to. The normalization, *N*, is described by the first term, e^{β_0} ;

• the Bernstein polynomial of order n (orders 3-7 were used)

$$b_n(t) = \sum_{i=0}^n \beta_i \binom{n}{i} t^i (1-t)^{n-i} , \qquad (8.27)$$

where $t = \frac{m_{\gamma\gamma}[GeV]-100}{60}$, and where β_i were fitted parameters.

Maximum spurious signal amplitude

Higgs Days 2012 Santander

A. Read, U. Oslo

Residual (unknown!) bias: Spurious signal term in likelihood

Toy study of LEE

- Wanted to verify conclusions of Gross&Vitells Look elsewhere paper with higher-stats MC.
- (Illustrates fits, asymptotics, limits of asymptotics)
- Hypothetical signal is gaussian with fixed width of 0.05
- Background is mean of 200 events uniformly distributed between 0 and 1

Look-elsewhere effect (LEE)

Ex: 10⁷ searches with 10⁻⁷ background

- Expect on the average 1 event with local p-value of 10^{-7} , but this is NOT a 5.2 σ discovery!
- Probability to make a false discovery is $P(n \ge 1|b=1) = 1 e^{-1}(-1)^0/1! = 63\%$
- Trials factor p₀^{global}/p₀^{local} from LEE is
 0.63x10⁷

Gross&Vitels: LEE in LLR-based search.

A. Read, U. Oslo/LAL

Fits to background toy

Higgs Days 2012 Santander

A. Read, U. Oslo

Six pseudo-experiments

Higgs Days 2012 Santander

A. Read, U. Oslo/LAL

13

14

LEE Study March 2012

LEE Study March 2012

15

A. Read, U. Oslo/LAL

Extend to 4 $\sigma\,$ – need Mfits!

LEE Study March 2012

A. Read, U. Oslo/LAL

138 Mfits away from edges

Delta 2NLL for fitted gaussian versus background

Study of Trials Factor

		2 σ	3 σ	4 σ	5 σ
	$P(\hat{q}(m) > Z^2)$	2.2 10 ⁻²	1.3 10-3	3.2 10 ⁻⁵	-
-	$P(\hat{q}(\hat{m}) > Z^2)$	2.8 10-1	2.3 10-2	6.9 10 ⁻⁴	-
	TF	12.9	17.9	21.5	-
	$P(\chi_1^2 > Z^2)/2$	2.3 10-2	1.3 10 ⁻³	3.2 10 ⁻⁵	2.9 10 ⁻⁷
	$P(\chi_2^2 > Z^2)/2$	6.8 10-2	5.6 10 ⁻³	1.7 10-4	1.9 10-6
	\mathcal{N}	3.84	3.92	3.90	-
	$TF \simeq 1 + \sqrt{rac{\pi}{2}} \mathcal{N}Z$	10.7	15.6	20.5	25.4

 $TF = \frac{P(q(\hat{m}) > Z^2)}{P(q(m) > Z^2)} \simeq 1 + \mathcal{N} \frac{P(\chi_2^2 > Z^2)}{P(\chi_1^2 > Z^2)}$

LEE Study March 2012

A. Read, U. Oslo/LAL

TF for 3 σ $TF \simeq 1 + \sqrt{\frac{\pi}{2}}\mathcal{N}Z$

With N=3.89, TF=15.6
Simple estimate $\Delta m / \sigma_m = 14$

Counting crossings

LEE Study March 2012

20

A. Read, U. Oslo/LAL

Study of crossings (see p. 5-7)

"Predicted" from: $P(q(\hat{\theta}) > c) \leq P(\chi_s^2 > c) + \langle N(c_0) \rangle (\frac{c}{c_0})^{(s-1)/2} e^{-(c-c_0)/2}$ (3)

	Average measured crossings <n></n>				
Crossing threshold	Range 0.05-0.95	Range 0.10-0.90	Range 0.15-0.85	Predicted	
0σ	2.19	1.99	1.74	1.95	
1σ	1.23	1.12	0.99	1.18	
2σ	0.29	0.26	0.23	0.26	

LEE Study March 2012

A. Read, U. Oslo/LAL

Alternate view of Z^2 bias

Background biased down

Signal biased up

Uncapping revisted

Motivation:

(1) Discuss deficits of background with p_0 , not p_{μ} (2) Discuss excess of signal with $CL_S \simeq p_{\mu}(when \ p_0 \simeq 1 - p_b \rightarrow \sim 0)$

All but $\hat{\mu}$ capped

Higgs Days 2012 Santander

A. Read, U. Oslo

Uncapping p₀, i.e. 1-p_b

Large, median (0.5), small p^0

QLEP (QTev w/o nuisances)

LEP CLS

Uncapping p_{μ} (almost CL_S)

Large, median (0.5), small p_{μ}

Higgs Days 2012 Santander

A. Read, U. Oslo

Energy scale systematics at high significance

Energy scale systematic uncertainties

Illustration: Imagine we had aligned the red and blue before combining...

1 uncertain mass scale

$$\mathbb{E}[N_u'] \leq \frac{1}{2} \mathbb{P}(\chi^2 > u) + \mathcal{N}_1 e^{-u/2} \frac{\sqrt{2\pi} \sigma_{_M}}{|\Delta|}$$

Leadbetter (1965), Vitells (2012)

1 uncertain mass scale

 $p_0^{\text{global}} \simeq p_0^{\text{local}} + < N(q_{\text{ref}}) > e^{-(q-q_{\text{ref}})/2}$

$$\mathbb{E}[N_u'] \leq \frac{1}{2} \mathbb{P}(\chi^2 > u) + \mathcal{N}_1 e^{-u/2} \frac{\sqrt{2\pi} \sigma_{_M}}{|\Delta|}$$

Leadbetter (1965), Vitells (2012)

Some random result

 Don't need O(10⁸) fits to MC toys to estimate tiny effect!

Importance Sampling Sven Kreiss Kyle Cranmer, Alex Read

Based on ideas from Alex Read and Michael Woodroofe

Michael Woodroofe's talk at Banff 2010: <u>http://people.stat.sfu.ca/~lockhart/richard/</u> <u>banff2010/woodroofe.pdf</u> where he covered importance sampling and a method to create a suitable importance density.

Technical: The current implementation uses a modified RooStats::ToyMCSampler and a custom script.

Idea: use a different density (importance density) to generate toys, but re-weight the result according to the ratio of their Likelihoods.

Can populate a small tail with few toys.

P.S. Implemented in alrmc program, used by DELPHI and LEP HWG

Importance Sampling with One Importance Density

A point is only used in the merged sampling distribution when its Likelihood is the largest of the tested densities.

Importance Sampling with Multiple Importance Densities

Adaptive number of importance densities:

get error at µ and use this to estimate the number of necessary importance densities to have the tails overlap at some target maximum number of standard deviations

NEW YORK UNIVERSITY

36

Some Tests

Work in progress... But much less urgent than we feared at some point!

Summary

- H-> $\gamma \gamma$ background modeled, residual spurious signal accounted for
- Study of 180 Mtoys entirely consistent with GV-LEE paper
- Uncapping reveals information inside the other
 ~half of p-value results
- We have a "carbon-light" method to deal with ESS at high significance
- Importance sampling promising but needs careful validation, perhaps some optimization