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Introduction
● Goal:

● Understand sensitivity to non-SM physics with simple, 
parameterized object reconstruction

● At 14 TeV with 300/fb, 1000/fb, and 3000/fb
● All analysis was performed on truth-level objects which 

were smeared according to detector resolutions.
● Trigger and reconstruction efficiencies are also taken into 

account.
● At the end of the talk, will few details about how analysis 

machinery works.
● If you are interested in using the code, please ask.
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Introduction
● Considered several scenarios for possible sensitivity to non-SM 

physics
● Vector boson scattering

● WW, ZZ final states
● High-mass exotic resonances

● Dilepton resonances
● ttbar resonances (l+jets and dilepton final states)

● ATL-PHYS-PUB-2012-001, ATL-PHYS-PUB-2012-004
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VBS Introduction
● Use BSM model to get non-SM VBS/VBF prediction
● Tested sensitivity to discrepancy between SM and non-SM 

model
● Details of analyses can be found in the ATLAS PUB note 

ATL-PHYS-PUB-2012-005
● Recently began to look at forward b-tagging for ttbar 

rejection.
● Collaborators:

● Philipp Anger, Pauline Bernat, Marco Campanelli, 
Michael Kobel, Jason Nielsen, Ulrike Schnoor

● + new collaborators from NIKHEF and UCSC
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VBS → ZZ Final State
● Used EW Chiral Lagrangian using a minimal K-matrix 

unitarization method
● A. Alboteanu, W. Kilian, and J. Reuter, Resonances and 

Unitarity in Weak Boson Scattering at the LHC, JHEP 0811 
(2008) 010, arXiv:0806.4145 [hep-ph].

● WHIZARD was used to generate
● SM VV scattering prediction to the ZZ final state
● Several VV resonances with various masses, couplings, 

and widths
● Other included backgrounds: diboson (Madgraph)
● Require 4 leptons, one trigger, and 2 jets (see backup for 

details)
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Final Spectrum and
Expected Sensitivity

(after dijet mass cut)

Expected
Stat-only 

Significance
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VBS → WW Final State
● Used EW Chiral Lagrangian with unitarization scheme 

from Dobado, et al
● A. Dobado, M. Herrero, J. Pelaez, and E. Ruiz Morales, 

Phys. Rev. D62 (2000) 055011, arXiv:hep-ph/9912224 
[hep-ph].

● Pythia6 was used to generate
● SM (a4, a5 = 0) VV scattering prediction to the WW final 

state
● Chiral Lagrangian with non-zero a4 values (a5 = 0)

● Other included backgrounds: ttbar, diboson
● Require 2 leptons, MET, and 2 jets (see backup for details)



2013 02 18 Chris Pollard    Duke University 8

Final Spectrum and Limit

Expected 
Stat-only 

Limits:
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Forward b-tagging Studies

● ttbar is the dominant background in the WWjj 
channel, especially at high mass.

● b-tagging is one natural way to reject ttbar in 
the signal region.

● For VBS, we expect to be particularly sensitive 
to b-tagging performance in the forward region.

● Will present some preliminary studies on gains 
from b-tagging at different operating points

● Will quote cross section limits to be as model-
independent as possible
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b-tagging Details
● Jets truth-matched to b-quarks if                

dR(jet, b) < 0.35
● Event rejected if there is at least one truth-

matched b-jet which is tagged
● For now, very simple b-tagging model:

● Assume flat efficiency centrally, linear falloff in 
forward region

● eta0 → begin falloff
● eta0 + 1 → zero efficiency
● pt0 → zero efficiency below

eta

ef
f.
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b-tagging Comparison
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b-tagging Comparison

75% central efficiency
eta0 = 1.5

pt0 = 25 GeV
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b-tagging Comparison

90% central efficiency
Full eta coverage

pt0 = 15 GeV
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Summary
● Have begun studies of the effect of a b-jet veto 

on spectra and expected limits in the VBS → 
WW j j→ e mu j j final state.

● Plan to fine-tune the parameter space that is 
most reasonable, but framework is working.

● Plots for all working points in the backup slides
pt0 (GeV) eta0 Central Efficiency 

(%)
Expected Cross 
Section Limit (fb)

-- -- 00 5.91
25 2.5 60 2.79
25 2.5 75 2.17
25 1.5 75 2.71
15 1.5 75 2.49
15 infinity 90 0.61
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High Mass Resonances
● Dilepton resonances

● Several models predict extensions to the electroweak 
sector.

● A heavy Z-like resonance might be the first evidence of 
such an extension.

● ttbar resonances
● In several BSM theories the top quark has stronger 

couplings to exotic particles due to its high mass.
● ttbar resonance searches also serve as a proxy for a 

variety of heavy decays with leptons, b-quarks, and 
MET.
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Final Spectra and Limits

Dielectron channel Dimuon channel
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ttbar Final Spectrum and Limits
Reconstructed ttbar (l+jets) mass spectrum Expected KKgluon mass limit in the l+jets channel

Expected stat-only
lepton+jets (dilepton)

limits in TeV
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Resonances Summary
Expected limits for various BSM searches at 14 TeV.

Rows 1 and 2 are for ttbar → l+jets (dilepton) channels.
Rows 3 and 4 are for dilepton resonances.

All Limits in TeV.
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Analysis Details
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Overview
Pythia

Card File

Les Houches
Accord File

Pythia-Based
Ntuple Maker

Truth Level
Ntuple

Object SelectorPhysics Object
Level Ntuple

or

Event Selection

Plots SM and non-SM
Templates Limit Setting Limits

Inputs/Outputs
Code
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Event Generation and Showering
● Inputs: pythia card or Les Houches Accord events
● Stores pdgId, pt, eta, phi, E, m of all truth particles
● Clusters jets with FastJet

● Truth electrons, photons, hadrons are clustered
● Currently clustering anti-kt (R = 0.4) and anti-kt (R = 1.0) jets, but not 

difficult to add more collections
● Matches jets to b-quarks (matching: dR(b, jet) < 0.35)

● Event, truth particle, and jet information written to a 'flat' TTree (only native c-
types and std::vectors).

Pythia
Card File

Les Houches
Accord File

Pythia-Based
Ntuple Maker

Truth Level
Ntupleor
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ObjSelector
● Inputs: truth level ntuple from previous transformation
● Smears electrons, muons, jets, and MET
● Applies trigger and reconstruction efficiencies
● Selects “good” objects from truth information
● MET defined as negative vector sum of all selected 

objects' momenta
● Should be fairly analysis independent

Truth Level
Ntuple ObjSelector Physics Object

Ntuple
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ObjSelector
● Most of the work is done inside 

ObjSelector/ObjSelector.cxx
● SmearXYZ():

● Defines smearing for a given reconstructed object
● FillGoodXYZ():

● Fills variables of “good” objects which are saved to 
ntuple

● Calls IsGoodXYZ()
● IsGoodXYZ():

● Determines definition of “good” electrons, jets, etc.
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EventSelector
● Input: Physics Object Ntuple from ObjSelector
● Reconstructs event-wide information

● Invariant masses, HT, etc.
● Selects “good” events based on what objects are in 

the event and event-wide variables
● Will vary from analysis to analysis—this is just a 

template.

Physics Object
Ntuple EventSelector Ntuple of

Selected Events
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How to check it
out and run it

● The code is publicly available through git or svn:
● git clone https://github.com/PollardSnowmass/SnowmassEWFrame.git
● svn co https://github.com/PollardSnowmass/SnowmassEWFrame/trunk

● ObjSelector and EventSelector just require a recent version of 
ROOT.

● Running event generation, showering, and clustering requires 
PYTHIA, LHAPDF, and FastJet.

● ATLAS smearing functions and efficiencies have been replaced 
with something generic.

● Perhaps it's best to settle on functions that everyone should 
use?

● Readmes should be enough to get started, but contact 
chris.pollard@duke.edu if you have questions.
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Summary

● Have completed several analyses for the 
ATLAS upgrade effort and work is continuing on 
others

● Have a working framework which is fairly simple 
and robust and can interface with many 
generators through .lhe files

● Willing to collaborate on projects if there is 
interest
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Backup Slides
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VBS → ZZ Event Selection

● Require
● 4 high-pt (> 25 GeV) leptons

– At least one must fire the trigger
● 2 anti-kt (R = 0.4) jets with pt > 50 GeV
● Invariant mass of the 2 leading jets > 1 TeV

● Use invariant mass of the 4 lepton system to set limits
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VBS → WW Event Selection

● Require
● 2 leptons with pt > 25 GeV

– At least one must fire the trigger
● 2 anti-kt (R = 0.4) jets with pt > 50 GeV

– Truth particles clustered with FastJet
● MET > 50 GeV
● One electron, one muon

– no Z/γ* background
● Use invariant mass of two lepton + two jet system to 

set limits.
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b-tagging Comparison
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b-tagging Comparison
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b-tagging Comparison

75% central efficiency
eta0 = 2.5

pt0 = 25 GeV
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b-tagging Comparison

75% central efficiency
eta0 = 1.5

pt0 = 25 GeV
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b-tagging Comparison

75% central efficiency
eta0 =  1.5

pt0 = 15 GeV
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b-tagging Comparison

90% central efficiency
Full eta coverage

pt0 = 15 GeV
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Z'→dilepton Sensitivity Study
● Pythia8 used to generate

● Dominant SM background: Z/γ* 
● Signal: Sequential Standard Model Z'

● Selection criteria from current dilepton analyses
● Applied to truth level objects after parameterized smearing and 

efficiencies
● Require two same-flavor leptons

– pt > 25 GeV
– Muons must be oppositely charged
– At least one must fire trigger

● log(m_ll)  spectrum for expected limit (cf. current ATLAS dilepton resonance 
search)
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ttbar Resonance Sensitivity Study
● Signal Templates:

● Randall-Sundrum Kaluza-Klein Gluon
● Top Color Leptophobic Z'

● Both lepton+jets and dilepton final states have been studied.
● Lepton+jets channel

● Generally more sensitive (higher branching fraction, fully-
reconstructible ttbar mass)

● More susceptible to pileup effects
● Considered ttbar, W+jets backgrounds (Pythia8)

● Dilepton channel
● Less sensitive (lower branching fraction, two neutrinos)
● Not affected as much by pileup
● Considered ttbar, Z+jets, diboson backgrounds (Pythia8)
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ttbar (Lepton+Jets) Event Selection

● Require:
● Exactly one triggered lepton with pt > 25 GeV
● One anti-kt (R = 1.0) jet with pt > 250 GeV which does not 

overlap with selected lepton (top-jet)
● One anti-kt (R = 0.4) jet with pt > 25 GeV which does not 

overlap with selected akt10 jet (leptonic b-jet)
● At least 50 GeV of MET

● W-mass constraint is used to determine neutrino pz
● Use invariant mass of lepton+neutrino+b-jet+top-jet system to 

set limits
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ttbar (Dilepton) Event Selection

● Require:
● Exactly two leptons with pt > 25 GeV

– At least one must fire the trigger
● Two anti-kt (R = 0.4) jets with pt > 25 GeV (b-jets)
● At least 50 GeV of MET

● HT (scalar sum pt of selected leptons and b-jets plus MET) 
used to set limits


