Studies of Vector Boson Scattering and High-Mass Resonances with Fast Simulation

Chris Pollard, Ashutosh Kotwal

Duke University

Introduction

- Goal:
 - Understand sensitivity to non-SM physics with simple, parameterized object reconstruction
 - At 14 TeV with 300/fb, 1000/fb, and 3000/fb
- All analysis was performed on truth-level objects which were smeared according to detector resolutions.
- Trigger and reconstruction efficiencies are also taken into account.
- At the end of the talk, will few details about how analysis machinery works.
- If you are interested in using the code, please ask.

Introduction

- Considered several scenarios for possible sensitivity to non-SM physics
- Vector boson scattering
 - WW, ZZ final states
- High-mass exotic resonances
 - Dilepton resonances
 - ttbar resonances (I+jets and dilepton final states)
- ATL-PHYS-PUB-2012-001, ATL-PHYS-PUB-2012-004

VBS Introduction

- Use BSM model to get non-SM VBS/VBF prediction
- Tested sensitivity to discrepancy between SM and non-SM model
- Details of analyses can be found in the ATLAS PUB note ATL-PHYS-PUB-2012-005
- Recently began to look at forward b-tagging for ttbar rejection.
- Collaborators:
 - Philipp Anger, Pauline Bernat, Marco Campanelli, Michael Kobel, Jason Nielsen, Ulrike Schnoor
 - + new collaborators from NIKHEF and UCSC

VBS \rightarrow ZZ Final State

- Used EW Chiral Lagrangian using a minimal K-matrix unitarization method
- A. Alboteanu, W. Kilian, and J. Reuter, Resonances and Unitarity in Weak Boson Scattering at the LHC, JHEP 0811 (2008) 010, arXiv:0806.4145 [hep-ph].
- WHIZARD was used to generate
 - SM VV scattering prediction to the ZZ final state
 - Several VV resonances with various masses, couplings, and widths
- Other included backgrounds: diboson (Madgraph)
- Require 4 leptons, one trigger, and 2 jets (see backup for details)

Final Spectrum and Expected Sensitivity

VBS \rightarrow WW Final State

- Used EW Chiral Lagrangian with unitarization scheme from Dobado, et al
- A. Dobado, M. Herrero, J. Pelaez, and E. Ruiz Morales, Phys. Rev. D62 (2000) 055011, arXiv:hep-ph/9912224 [hep-ph].
- Pythia6 was used to generate
 - SM (a4, a5 = 0) VV scattering prediction to the WW final state
 - Chiral Lagrangian with non-zero a4 values (a5 = 0)
- Other included backgrounds: ttbar, diboson
- Require 2 leptons, MET, and 2 jets (see backup for details)

Final Spectrum and Limit

Forward b-tagging Studies

- ttbar is the dominant background in the WWjj channel, especially at high mass.
- b-tagging is one natural way to reject ttbar in the signal region.
- For VBS, we expect to be particularly sensitive to b-tagging performance in the forward region.
- Will present some preliminary studies on gains from b-tagging at different operating points
- Will quote cross section limits to be as modelindependent as possible

b-tagging Details

- Jets truth-matched to b-quarks if dR(jet, b) < 0.35
- Event rejected if there is at least one truthmatched b-jet which is tagged
- For now, very simple b-tagging model:
 - Assume flat efficiency centrally, linear falloff in forward region
 - eta0 \rightarrow begin falloff
 - eta0 + 1 \rightarrow zero efficiency
 - pt0 \rightarrow zero efficiency below

No b-tagging

Cross section limit: 5.91 fb

75% central efficiency eta0 = 1.5 pt0 = 25 GeV

Cross section limit: 2.71 fb

90% central efficiency Full eta coverage pt0 = 15 GeV

Cross section limit: 0.61 fb

Summary

- Have begun studies of the effect of a b-jet veto on spectra and expected limits in the VBS \rightarrow WW j j \rightarrow e mu j j final state.
- Plan to fine-tune the parameter space that is most reasonable, but framework is working.
- Plots for all working points in the backup slides

	pt0 (GeV)	eta0	Central Efficiency (%)	Expected Cross Section Limit (fb)
			00	5.91
25		2.5	60	2.79
25		2.5	75	2.17
25		1.5	75	2.71
15		1.5	75	2.49
15		infinity	90	0.61

High Mass Resonances

- Dilepton resonances
 - Several models predict extensions to the electroweak sector.
 - A heavy Z-like resonance might be the first evidence of such an extension.
- ttbar resonances
 - In several BSM theories the top quark has stronger couplings to exotic particles due to its high mass.
 - ttbar resonance searches also serve as a proxy for a variety of heavy decays with leptons, b-quarks, and MET.

Final Spectra and Limits

ttbar Final Spectrum and Limits

Resonances Summary

Expected limits for various BSM searches at 14 TeV. Rows 1 and 2 are for ttbar → I+jets (dilepton) channels. Rows 3 and 4 are for dilepton resonances. All Limits in TeV.

model	$300 {\rm fb}^{-1}$	$1000 {\rm fb}^{-1}$	3000fb^{-1}
<i>GKK</i>	4.3 (4.0)	5.6 (4.9)	6.7 (5.6)
$Z'_{\text{Topcolour}}$	3.3 (1.8)	4.5 (2.6)	5.5 (3.2)
$Z'_{SSM} \rightarrow ee$	6.5	7.2	7.8
$Z'_{SSM} \rightarrow \mu\mu$	6.4	7.1	7.6

Analysis Details

Event Generation and Showering

- Inputs: pythia card or Les Houches Accord events
- Stores pdgId, pt, eta, phi, E, m of all truth particles
- Clusters jets with FastJet
 - Truth electrons, photons, hadrons are clustered
 - Currently clustering anti-kt (R = 0.4) and anti-kt (R = 1.0) jets, but not difficult to add more collections
- Matches jets to b-quarks (matching: dR(b, jet) < 0.35)
- Event, truth particle, and jet information written to a 'flat' TTree (only native c-types and std::vectors).

ObjSelector

- Inputs: truth level ntuple from previous transformation
- Smears electrons, muons, jets, and MET
- Applies trigger and reconstruction efficiencies
- Selects "good" objects from truth information
- MET defined as negative vector sum of all selected objects' momenta
- Should be fairly analysis independent

ObjSelector

- Most of the work is done inside ObjSelector/ObjSelector.cxx
- SmearXYZ():
 - Defines smearing for a given reconstructed object
- FillGoodXYZ():
 - Fills variables of "good" objects which are saved to ntuple
 - Calls IsGoodXYZ()
- IsGoodXYZ():
 - Determines definition of "good" electrons, jets, etc.

EventSelector

- Input: Physics Object Ntuple from ObjSelector
- Reconstructs event-wide information
 - Invariant masses, HT, etc.
- Selects "good" events based on what objects are in the event and event-wide variables
- Will vary from analysis to analysis—this is just a template.

How to check it out and run it

- The code is publicly available through git or svn:
 - git clone https://github.com/PollardSnowmass/SnowmassEWFrame.git
 - svn co https://github.com/PollardSnowmass/SnowmassEWFrame/trunk
- ObjSelector and EventSelector just require a recent version of ROOT.
- Running event generation, showering, and clustering requires PYTHIA, LHAPDF, and FastJet.
- ATLAS smearing functions and efficiencies have been replaced with something generic.
 - Perhaps it's best to settle on functions that everyone should use?
- Readmes should be enough to get started, but contact chris.pollard@duke.edu if you have questions.

Summary

- Have completed several analyses for the ATLAS upgrade effort and work is continuing on others
- Have a working framework which is fairly simple and robust and can interface with many generators through .lhe files
- Willing to collaborate on projects if there is interest

Backup Slides

VBS \rightarrow ZZ Event Selection

- Require
 - 4 high-pt (> 25 GeV) leptons
 - At least one must fire the trigger
 - 2 anti-kt (R = 0.4) jets with pt > 50 GeV
 - Invariant mass of the 2 leading jets > 1 TeV
- Use invariant mass of the 4 lepton system to set limits

VBS → WW Event Selection

• Require

- 2 leptons with pt > 25 GeV
 - At least one must fire the trigger
- 2 anti-kt (R = 0.4) jets with pt > 50 GeV
 - Truth particles clustered with FastJet
- *MET* > 50 *GeV*
- One electron, one muon

no Z/y* background

• Use invariant mass of two lepton + two jet system to set limits.

No b-tagging

Cross section limit: 5.91 fb

60% central efficiency eta0 = 2.5 pt0 = 25 GeV

Cross section limit: 2.79 fb

75% central efficiency eta0 = 2.5 pt0 = 25 GeV

Cross section limit: 2.17 fb

75% central efficiency eta0 = 1.5 pt0 = 25 GeV

Cross section limit: 2.71 fb

75% central efficiency eta0 = 1.5 pt0 = 15 GeV

Cross section limit: 2.49 fb

90% central efficiency Full eta coverage pt0 = 15 GeV

Cross section limit: 0.61 fb

$Z' \rightarrow dilepton \ Sensitivity \ Study$

- Pythia8 used to generate
 - Dominant SM background: Z/γ*
 - Signal: Sequential Standard Model Z'
- Selection criteria from current dilepton analyses
 - Applied to truth level objects after parameterized smearing and efficiencies
 - Require two same-flavor leptons
 - *pt* > 25 GeV
 - Muons must be oppositely charged
 - At least one must fire trigger
- log(m_ll) spectrum for expected limit (cf. current ATLAS dilepton resonance search)

ttbar Resonance Sensitivity Study

- Signal Templates:
 - Randall-Sundrum Kaluza-Klein Gluon
 - Top Color Leptophobic Z'
- Both lepton+jets and dilepton final states have been studied.
- Lepton+jets channel
 - Generally more sensitive (higher branching fraction, fullyreconstructible ttbar mass)
 - More susceptible to pileup effects
 - Considered ttbar, W+jets backgrounds (Pythia8)
- Dilepton channel
 - Less sensitive (lower branching fraction, two neutrinos)
 - Not affected as much by pileup
 - Considered ttbar, Z+jets, diboson backgrounds (Pythia8)

ttbar (Lepton+Jets) Event Selection

- Require:
 - Exactly one triggered lepton with pt > 25 GeV
 - One anti-kt (R = 1.0) jet with pt > 250 GeV which does not overlap with selected lepton (top-jet)
 - One anti-kt (R = 0.4) jet with pt > 25 GeV which does not overlap with selected akt10 jet (leptonic b-jet)
 - At least 50 GeV of MET
- W-mass constraint is used to determine neutrino pz
- Use invariant mass of lepton+neutrino+b-jet+top-jet system to set limits

ttbar (Dilepton) Event Selection

- Require:
 - Exactly two leptons with pt > 25 GeV
 - At least one must fire the trigger
 - Two anti-kt (R = 0.4) jets with pt > 25 GeV (b-jets)
 - At least 50 GeV of MET
- HT (scalar sum pt of selected leptons and b-jets plus MET) used to set limits