String Theory applied to strongly interacting systems

Andrei Starinets

Rudolf Peierls Centre for Theoretical Physics

Oxford University

IOP Meeting on Heavy Ion Physics Liverpool

30 January 2013

Outline

Brief overview of holographic (gauge/gravity) duality

Finite temperature, holography and black holes

Transport in strongly coupled gauge theories from black hole physics

First- and second-order hydrodynamics and dual gravity

Photon/dilepton emission rates from dual gravity

Quantum liquids and holography

Other approaches

Over the last several years, holographic (gauge/gravity duality) methods were used to study strongly coupled gauge theories at finite temperature and density

These studies were motivated by the heavy-ion collision programs at RHIC and LHC (ALICE, ATLAS) and the necessity to understand hot and dense nuclear matter in the regime of intermediate coupling $\alpha_s(T_{\text{RHIC}}) \sim O(1)$

As a result, we now have a better understanding of thermodynamics and especially kinetics (transport) of strongly coupled gauge theories

Of course, these calculations are done for theoretical models such as N=4 SYM and its cousins (including non-conformal theories etc).

We don't know quantities such as
$$\frac{\eta}{s} \left(\frac{\Lambda_{QCD}}{T} \right)$$
 for QCD

Heavy ion collision experiments at RHIC (2000-current) and LHC (2010-??) create hot and dense nuclear matter known as the "quark-gluon plasma"

(note: qualitative difference between p-p and Au-Au collisions)

Evolution of the plasma "fireball" is described by relativistic fluid dynamics (relativistic Navier-Stokes equations)

Need to know

thermodynamics (equation of state)
kinetics (first- and second-order transport coefficients)
in the regime of intermediate coupling strength:

$$\alpha_s(T_{\mathsf{RHIC}}) \sim O(1)$$

initial conditions (initial energy density profile)
thermalization time (start of hydro evolution)
freeze-out conditions (end of hydro evolution)

Energy density vs temperature for various gauge theories

Figure: an artistic impression from Myers and Vazquez, 0804.2423 [hep-th]

Quantum field theories at finite temperature/density

perturbative non-perturbative pQCD Lattice

perturbative non-perturbative kinetic theory ????

First-order transport (kinetic) coefficients

Shear viscosity η

Bulk viscosity ζ

Charge diffusion constant D_Q

Supercharge diffusion constant D_s

Thermal conductivity κ_T

Electrical conductivity σ

^{*} Expect Einstein relations such as $\frac{\sigma}{e^2 \equiv} = D_{U(1)}$ to hold

Hydrodynamics: fundamental d.o.f. = densities of conserved charges

Need to add constitutive relations!

Example: charge diffusion

Conservation law

Diffusion equation

$$\partial_t j^0 + \partial_i j^i = 0$$

$$j_i = -D \,\partial_i \,j^0 + O[(\nabla j^0)^2, \nabla^2 j^0]$$

$$\partial_t j^0 = D\nabla^2 j^0$$

$$\omega = -i D q^2 + \cdots$$

Expansion parameters: $\omega \ll T$, $q \ll T$

Hydrodynamic properties of strongly interacting hot plasmas in 4 dimensions can be related (for certain models!)

to fluctuations and dynamics of 5-dimensional black holes

Gravitational+electromag fluctuations

$$g_{\mu\nu}^{(0)} + h_{\mu\nu} \qquad A_{\mu}^{0} + a_{\mu}$$

$$A_{\mu}^{0} + a_{\mu}$$

$$\iff$$

"
$$\square$$
" $h_{\mu\nu}=0$ and B.C.

Quasinormal spectrum

Deviations from equilibrium

$$j_i = -D\partial_i j^0 + \cdots$$

$$\partial_t j^0 + \partial_i j^i = 0$$

$$\partial_t j^0 = D\nabla^2 j^0$$

$$\omega = -iDq^2 + \cdots$$

From brane dynamics to AdS/CFT correspondence

Open strings picture: dynamics of N_c coincident D3 branes at low energy is described by

Closed strings picture: dynamics of N_c coincident D3 branes at low energy is described by

 $\mathcal{N}=4$ supersymmetric $SU(N_c)$ YM theory in 4 dim

type IIB superstring theory on $AdS_5 \times S^5$ backgrond

conjectured exact equivalence

Maldacena (1997); Gubser, Klebanov, Polyakov (1998); Witten (1998)

$\mathcal{N}=4$ supersymmetric YM theory

Gliozzi, Scherk, Olive' 77 Brink, Schwarz, Scherk' 77

Field content:

$$A_{\mu}$$
 Φ_{I} Ψ_{α}^{A} all in the adjoint of $SU(N)$ $I=1\ldots 6$ $A=1\ldots 4$

Action:

$$S = \frac{1}{g_{YM}^2} \int d^4x \operatorname{tr} \left\{ \frac{1}{2} F_{\mu\nu}^2 + (D_{\mu} \Phi_I)^2 - \frac{1}{2} [\Phi_I, \Phi_J]^2 + i \bar{\Psi} \Gamma^{\mu} D_{\mu} \Psi - \bar{\Psi} \Gamma^I [\Phi_I, \Psi] \right\}$$

(super)conformal field theory = coupling doesn't run

AdS/CFT correspondence

 $\mathcal{N}=$ 4 supersymmetric $SU(N_c)$ YM theory in 4 dim

type IIB superstring theory on $AdS_5 \times S^5$ backgrond

conjectured exact equivalence

$$Z_{\text{SYM}}[J] = \langle e^{-\int J \mathcal{O} d^4 x} \rangle_{\text{SYM}} = Z_{\text{string}}[J]$$

Generating functional for correlation functions of gauge-invariant operators

String partition function

$$\langle \mathcal{O} \ \mathcal{O} \ \cdots \mathcal{O} \rangle$$

In particular

$$Z_{\mathsf{SYM}}[J] = Z_{\mathsf{string}}[J] \simeq e^{-S_{\mathsf{grav}}[J]}$$
 $\lambda \equiv g_{YM}^2 \, N_c \gg 1$
 $N_c \gg 1$

Classical gravity action serves as a generating functional for the gauge theory correlators

Holography at finite temperature and density

$$\langle \mathcal{O} \rangle = \frac{\mathrm{tr} \rho \mathcal{O}}{\mathrm{tr} \rho}$$

$$H \to T^{00} \to T^{\mu\nu} \to h_{\mu\nu}$$

$$\rho = e^{-\beta H + \mu Q}$$

$$Q \to J^0 \to J^\mu \to A_\mu$$

Nonzero expectation values of energy and charge density translate into nontrivial background values of the metric (above extremality)=horizon and electric potential = CHARGED BLACK HOLE (with flat horizon)

$$ds^2 = -F(u) dt^2 + G(u) \left(dx^2 + dy^2 + dz^2 \right) + H(u) du^2$$

$$T = T_H \qquad \text{temperature of the dual gauge theory}$$

$$A_0 = P(u)$$

$$\mu = P(boundary) - P(horizon)$$
 chemical potential of the dual theory

Computing transport coefficients from "first principles"

Fluctuation-dissipation theory (Callen, Welton, Green, Kubo)

Kubo formulae allows one to calculate transport coefficients from microscopic models

$$\eta = \lim_{\omega \to 0} \frac{1}{2\omega} \int dt \, d^3x e^{i\omega t} \langle \left[T_{xy}(t,x), T_{xy}(0,0) \right] \rangle$$

In the regime described by a gravity dual the correlator can be computed using the gauge theory/gravity duality

Computing real-time correlation functions from gravity

To extract transport coefficients and spectral functions from dual gravity, we need a recipe for computing Minkowski space correlators in AdS/CFT

The recipe of [D.T.Son & A.S., 2001] and [C.Herzog & D.T.Son, 2002] relates real-time correlators in field theory to Penrose diagram of black hole in dual gravity

Quasinormal spectrum of dual gravity = poles of the retarded correlators in 4d theory [D.T.Son & A.S., 2001]

Computing transport coefficients from dual gravity

Assuming validity of the gauge/gravity duality, all transport coefficients are completely determined by the lowest frequencies in quasinormal spectra of the dual gravitational background

(D.Son, A.S., hep-th/0205051, P.Kovtun, A.S., hep-th/0506184)

This determines kinetics in the regime of a thermal theory where the dual gravity description is applicable

Transport coefficients and quasiparticle spectra can also be obtained from thermal spectral functions $\chi = -2 \operatorname{Im} G^R(\omega, q)$

Sound and supersymmetric sound in $4d \mathcal{N} = 4 \text{ SYM}$

$$\epsilon = 3P$$

$$\zeta = 0$$

$$v_s = \sqrt{\frac{\partial P}{\partial \epsilon}} = \frac{1}{\sqrt{3}}$$

$$v_{SS} = \frac{P}{\epsilon} = \frac{1}{3}$$

$$\omega = \pm \frac{q}{\sqrt{3}} - i \frac{2\eta}{3sT} q^2 + \cdots$$

$$\omega = \pm \frac{q}{3} - iD_s q^2 + \cdots$$

Quasinormal modes in dual gravity

$$\omega = \pm \frac{q}{\sqrt{3}} - i \frac{1}{6\pi T} q^2 + \dots \implies \frac{\eta}{s} = \frac{1}{4\pi}$$

$$\omega = \pm \frac{q}{3} - i \frac{2\sqrt{2}}{9\pi T} q^2 + \cdots \Longrightarrow$$

$$D_s = \frac{2\sqrt{2}}{9\pi T}$$

Analytic structure of the correlators

Strong coupling: A.S., hep-th/0207133

Weak coupling: S. Hartnoll and P. Kumar, hep-th/0508092

Spectral function and quasiparticles

$$\chi_{\mu\nu,\alpha\beta}(k) = \int d^4x \, e^{-ikx} \, \langle \left[T_{\mu\nu}(x) T_{\alpha\beta}(0) \right] \rangle = -2 \operatorname{Im} G^R_{\mu\nu,\alpha\beta}(\omega,q)$$

A: scalar channel

B: scalar channel - thermal part

C: sound channel

Energy and Momentum Density

$\mathcal{N}=4$ supersymmetric YM theory

Gliozzi, Scherk, Olive' 77 Brink, Schwarz, Scherk' 77

Field content:

$$A_{\mu}$$
 Φ_{I} Ψ_{α}^{A} all in the adjoint of $SU(N)$ $I=1\ldots 6$ $A=1\ldots 4$

Action:

$$S = \frac{1}{g_{YM}^2} \int d^4x \operatorname{tr} \left\{ \frac{1}{2} F_{\mu\nu}^2 + (D_{\mu} \Phi_I)^2 - \frac{1}{2} [\Phi_I, \Phi_J]^2 + i \bar{\Psi} \Gamma^{\mu} D_{\mu} \Psi - \bar{\Psi} \Gamma^I [\Phi_I, \Psi] \right\}$$

(super)conformal field theory = coupling doesn't run

First-order transport coefficients in N = 4 SYM

in the limit
$$N_c \to \infty$$
, $g_{YM}^2 N_c \to \infty$

Shear viscosity
$$\eta = \frac{\pi}{8} N_c^2 T^3 \left[1 + O\left(\frac{1}{(g^2 N_c)^{3/2}}, \frac{1}{N_c^2}\right) \right]$$

Bulk viscosity

 $\zeta = 0$

for non-conformal theories see Buchel et al; G.D.Moore et al Gubser et al.

Charge diffusion constant

$$D_R = \frac{1}{2\pi T} + \cdots$$

Supercharge diffusion constant

$$D_s = \frac{2\sqrt{2}}{9\pi T}$$

Thermal conductivity

$$\frac{\kappa_T \ \mu^2}{\eta \ T} = 8\pi^2 + \cdots$$

Electrical conductivity

$$\sigma = e^2 \frac{N_c^2 T}{16 \pi} + \cdots$$

Shear viscosity in N = 4 SYM

Correction to $1/4\pi$: Buchel, Liu, A.S., hep-th/0406264

Buchel, 0805.2683 [hep-th]; Myers, Paulos, Sinha, 0806.2156 [hep-th]

Electrical conductivity in N = 4 SYM

Weak coupling:
$$\sigma = 1.28349 \frac{e^2 (N_c^2 - 1) T}{\lambda^2 \left[\ln \lambda^{-1/2} + O(1) \right]}$$

Strong coupling:
$$\sigma = \frac{e^2 N_c^2 T}{16 \pi} + O\left(\frac{1}{\lambda^{3/2}}\right)$$

$$\lambda \gg 1$$

* Charge susceptibility can be computed independently: $\equiv = \frac{N_c^2 T^2}{8}$ D.T.Son, A.S., hep-th/0601157

Einstein relation holds:
$$\frac{\sigma}{e^2 \Xi} = D_{U(1)} = \frac{1}{2\pi T}$$

A viscosity bound conjecture

$$\frac{\eta}{s} \ge \frac{\hbar}{4\pi k_B} \approx 6.08 \cdot 10^{-13} \, K \cdot s$$

P.Kovtun, D.Son, A.S., hep-th/0309213, hep-th/0405231

$$(\eta/s)_{
m min}\sim$$
 25 in units of ${\hbar\over 4\pi k_B}$

Chernai, Kapusta, McLerran, nucl-th/0604032

Chernai, Kapusta, McLerran, nucl-th/0604032

Viscosity-entropy ratio of a trapped Fermi gas

 $\eta/s \sim 4.2$ in units of $\frac{h}{4\pi k_B}$

T.Schafer, cond-mat/0701251

(based on experimental results by Duke U. group, J.E.Thomas et al., 2005-06)

QCD

Chernai, Kapusta, McLerran, nucl-th/0604032

Viscosity "measurements" at RHIC

Viscosity is ONE of the parameters used in the hydro models describing the azimuthal anisotropy of particle distribution

$$\frac{d^2N^i}{dp_Td\phi} = N_0^i \left[1 + 2v_2^i(p_T) \cos 2\phi + \cdots \right] \qquad v_2^i(p_T) \text{ -elliptic flow for}$$

particle species "i"

Elliptic flow reproduced for

$$0 < \eta/s \le 0.3$$

e.g. Baier, Romatschke, nucl-th/0610108

Perturbative QCD:

$$\eta/s\left(T_{\mathrm{RHIC}}\right) \approx 1.6 \sim 1.8$$

Chernai, Kapusta, McLerran, nucl-th/0604032

SYM: $\eta/s \approx 0.09 \sim 0.28$

Elliptic flow with color glass condensate initial conditions

Luzum and Romatschke, 0804.4015 [nuc-th]

Elliptic flow with Glauber initial conditions

Luzum and Romatschke, 0804.4015 [nuc-th]

Viscosity/entropy ratio in QCD

Theories with gravity duals in the regime where the dual gravity description is valid

Kovtun, Son & A.S; Buchel; Buchel & Liu, A.S

$$\frac{\eta}{s} = \frac{1}{4\pi} \approx 0.08$$

(universal limit)

QCD: RHIC elliptic flow analysis suggests

 $0 < \frac{\eta}{s} < 0.2$

QCD: (Indirect) LQCD simulations

H.Meyer, 0805.4567 [hep-th]

 $0.08 < \frac{\eta}{s} < 0.16$

 $1.2 T_c < T < 1.7 T_c$

T.Schafer, 0808.0734 [nucl-th]

Liquid Helium-3

$$\left(\frac{\eta}{s}\right)_{\text{min}} \approx 0.5$$

$$\left(\frac{\eta}{s}\right)_{\text{min}} \approx 0.7$$

Photon and dilepton emission from supersymmetric Yang-Mills plasma

S. Caron-Huot, P. Kovtun, G. Moore, A.S., L.G. Yaffe, hep-th/0607237

Photon emission from SYM plasma

Photons interacting with matter: $e J_{\mu}^{EM} A^{\mu}$

To leading order in
$$e$$
 $d\Gamma_{\gamma} = \frac{d^3k}{(2\pi)^3} \frac{e^2}{2|k|} \eta^{\mu\nu} C_{\mu\nu}^{<}(k^0 = |k|)$

$$C_{\mu\nu}^{<} = \int d^4X e^{-iKX} \langle J_{\mu}^{\text{EM}}(0) J_{\nu}^{\text{EM}}(X) \rangle$$

Mimic J_{μ}^{EM} by gauging global R-symmetry $U(1) \subset SU(4)$

$$\mathcal{L} = \mathcal{L}_{\mathcal{N}=4 \text{ SYM}} + e J_{\mu}^{3} A^{\mu} - \frac{1}{4} F_{\mu\nu}^{2}$$

Need only to compute correlators of the R-currents J_{μ}^{3}

Photoproduction rate in SYM

(Normalized) photon production rate in SYM for various values of 't Hooft coupling

$$\frac{d\Gamma_{\gamma}}{dk \,\alpha_{em}N_c^2 T^3} = n_B(k) \left(\frac{k}{4\pi T}\right)^2 \left| \,_2F_1\left(1 - \frac{(1+i)k}{4\pi T}, 1 + \frac{(1-i)k}{4\pi T}; 1 - \frac{ik}{2\pi T}; -1\right)\right|^{-2}$$

Probing quantum liquids with holography

Quantum liquid in p+1 dim	Low-energy elementary excitations	Specific heat at low T
Quantum Bose liquid	phonons	$\sim T^p$
Quantum Fermi liquid (Landau FLT)	fermionic quasiparticles + bosonic branch (zero sound)	$\sim T$

Departures from normal Fermi liquid occur in

- 3+1 and 2+1 —dimensional systems with strongly correlated electrons
- In 1+1 —dimensional systems for any strength of interaction (Luttinger liquid)

One can apply holography to study strongly coupled Fermi systems at low T

The simplest candidate with a known holographic description is

 $SU(N_c)$ $\mathcal{N}=4$ SYM coupled to N_f $\mathcal{N}=2$ fundamental hypermultiplets

at finite temperature T and nonzero chemical potential associated with the "baryon number" density of the charge $U(1)_B \subset U(N_f)$

There are two dimensionless parameters: $\frac{n_q^{1/3}}{T}$ $\frac{M}{T}$

 n_q is the baryon number density

M is the hypermultiplet mass

The holographic dual description in the limit $N_c \gg 1$, $g_{YM}^2 N_c \gg 1$, N_f finite is given by the D3/D7 system, with D3 branes replaced by the AdS-Schwarzschild geometry and D7 branes embedded in it as probes.

Karch & Katz, hep-th/0205236

AdS-Schwarzschild black hole (brane) background

$$ds^{2} = \frac{r^{2}}{R^{2}} \left[-\left(1 - \frac{r_{H}^{4}}{r^{4}}\right) dt^{2} + d\vec{x}^{2} \right] + \left(1 - \frac{r_{H}^{4}}{r^{4}}\right)^{-1} \frac{R^{2}}{r^{2}} dr^{2}$$

D7 probe branes

$$S_{DBI} = -N_f T_{D7} \int d^8 \xi \sqrt{-\det(g_{ab} + 2\pi\alpha' F_{ab})}$$

The worldvolume U(1) field A_{μ} couples to the flavor current J^{μ} at the boundary

Nontrivial background value of A_0 corresponds to nontrivial expectation value of J^0

We would like to compute

- the specific heat at low $(Tn_q^{-1/3} \ll 1)$ temperature
- the charge density correlator $G^R \sim \langle J^0(k) \ J^0(-k) \rangle$

★ The specific heat (in p+1 dimensions):

$$c_V = \mathcal{N}_q p \left(\frac{4\pi}{p+1}\right)^{2p+1} \frac{T^{2p}}{n_q} \left[1 + O(Tn_q^{-\frac{1}{p}})\right]$$

(note the difference with Fermi $c_V \sim T$ and Bose $c_V \sim T^p$ systems)

★ The (retarded) charge density correlator $G^R \sim \langle J^0(k) \ J^0(-k) \rangle$ has a pole corresponding to a propagating mode (zero sound) - even at zero temperature

$$\omega = \pm \frac{q}{\sqrt{p}} - \frac{i\Gamma(\frac{1}{2})q^2}{n_q^{\frac{1}{p}}\Gamma(\frac{1}{2} - \frac{1}{2p})\Gamma(\frac{1}{2p})} + O(q^3)$$

(note that this is NOT a superfluid phonon whose attenuation scales as q^{p+1})

New type of quantum liquid?

Other avenues of (related) research

Bulk viscosity for non-conformal theories (Buchel, Gubser,...)

Non-relativistic gravity duals (Son, McGreevy,...)

Gravity duals of theories with SSB (Kovtun, Herzog,...)

Bulk from the boundary (Janik,...)

Navier-Stokes equations and their generalization from gravity (Minwalla,...)

Quarks moving through plasma (Chesler, Yaffe, Gubser,...)

Epilogue

- On the level of theoretical models, there exists a connection between near-equilibrium regime of certain strongly coupled thermal field theories and fluctuations of black holes
- ➤ This connection allows us to compute transport coefficients for these theories
- At the moment, this method is the only theoretical tool available to study the near-equilibrium regime of strongly coupled thermal field theories
- The result for the shear viscosity turns out to be universal for all such theories in the limit of infinitely strong coupling
- Influences other fields (heavy ion physics, condmat)

THANK YOU

A hand-waving argument

$$\eta \sim \rho v l \sim \rho v^2 \tau \sim n m v^2 \tau \sim n \epsilon \tau$$

 $s \sim n$

Thus
$$\frac{\eta}{s} \sim \epsilon au \geq au$$

$$\frac{\eta}{s} \geq \hbar/4\pi$$

Outlook

- Gravity dual description of thermalization ?
- Gravity duals of theories with fundamental fermions:
 - phase transitions
 - heavy quark bound states in plasma
 - transport properties
- Finite 't Hooft coupling corrections to photon emission spectrum
 - Understanding 1/N corrections
 - Phonino

Energy density vs temperature for various gauge theories

Figure: an artistic impression from Myers and Vazquez, 0804.2423 [hep-th]

Gauge-string duality can explore and qualitatively explain (with model-dependent limitations!) QGP-related phenomena such as

The bulk and the boundary in AdS/CFT correspondence

$$ds^{2} = \frac{\eta_{\mu\nu} \, dx^{\mu} \, dx^{\nu} + dz^{2}}{z^{2}}$$

UV/IR: the AdS metric is invariant under $z \rightarrow \Lambda z \quad x \rightarrow \Lambda x$

