

XXIV Workshop on Weak Interactions and Neutrinos WIN 2013 Sep. 16 to 21, 2013 Natal, Brazil

Measurement of γ from B \rightarrow DK decays

Stefania Ricciardi

STFC Rutherford Appleton Laboratory

On behalf of the LHCb Collaboration

Outline

- Motivation and methods
- Results with $B^+ \rightarrow DK^+$ decays
- The LHCb γ combination
- Additional measurements from
 - $-B^{0}\rightarrow DK^{*0}$

-
$$B^{0}_{(s)} \rightarrow D^{0}K^{+}\pi^{-}$$

- $B^{0}_{s} \rightarrow D_{s}^{\pm}K^{\mp}$
- $B^{0}_{s} \rightarrow D^{0}\phi$ first observation

 Methods and D final states

 GLW : f_D = KK, ππ
 [Gronau-London-Wyler] PLB 253,483(1991), PLB 265,172 1991)

 ADS : f_D = Kπ, Kπππ
 [Atwood-Dunietz-Soni] PRL 78,257(1997), PRD 63,036005(2001)

 GGSZ : f_D = K_Sππ, K_SKK
 [Giri-Grossman-Soffer-Zupan] PRD 68,054018(2003)

 Bondar, PRD 70,072003 (2004)

Same methods apply to $B^- \rightarrow D\pi^-$, but interference smaller

Stefania Ricciardi

The compelling case for measuring γ

- Indirect path to New Physics discovery through precise CKM metrology
- γ from B⁺ \rightarrow DK⁺ free from theoretical uncertainties (tree-level decays only)
- Still large experimental uncertaintyfrom direct measurementsCKMFITTER (post FPCP13) $\gamma = 68.0 + 8.0 8.5^{\circ}$ UTFIT (pre-Moriond13) $\gamma = 70.8 \pm 7.8^{\circ}$ Above averages include early LHCb results

Smallest theoretical uncertainty but largest experimental error among all UT constraints!

Experimental challenges

GLW and ADS observables

GLW and ADS observables built as ratios of branching fractions (many systematic uncertainties cancel in the ratios)

ADS/GLW CP asymmetries, $f_D = KK$, $\pi\pi$, $K\pi$, $K\pi\pi\pi$

$$A_h^f \equiv \frac{\Gamma(B^- \to f_D h^-) - \Gamma(B^+ \to f_D h^+)}{\Gamma(B^- \to f_D h^-) + \Gamma(B^+ \to f_D h^+)}$$

ADS/GLW K/ π ratios, $f_D = KK$, $\pi\pi$, $K\pi$, $K\pi\pi\pi$ $R^f_{K/\pi} \equiv \frac{\Gamma(B^- \to f_D K^-) + \Gamma(B^+ \to f_D K^+)}{\Gamma(B^- \to f_D \pi^-) + \Gamma(B^+ \to f_D \pi^+)}$ Ratio of ADS suppressed and favoured

final states, $f_{\rm D} = K\pi$, $K\pi\pi\pi$ $R_h^{f\pm} \equiv \frac{\Gamma(f_D h^{\pm})^{\rm sup}}{\Gamma(\bar{f}_D h^{\pm})^{fav}}$ [PLB 712(2012),213]

GLW/ADS with $B^+ \rightarrow Dh^+$, $D \rightarrow 2body$

Large asymmetry in $B \rightarrow DK$: $A_{ADS} = (-52 \pm 15 \pm 2)\% [4\sigma]$ Hint of asymmetry in $B \rightarrow D\pi$: $A_{ADS} = (14.3 \pm 6.2 \pm 1.1)\% [2.4\sigma]$

1 fb⁻¹

[PLB 723 (2013) 44-53] **ADS with B⁺** \rightarrow **Dh⁺, D** \rightarrow K $\pi\pi\pi$

Same r_B and δ_B , but different *D* decay parameters Complementary information to $B \rightarrow D(K\pi)K$ not just additional statistics

1 fb⁻¹

GGSZ with $B^+ \rightarrow DK^+$, $D \rightarrow K_s h^+ h^-$

Exploits interference pattern in the $D \rightarrow K_s \pi^+ \pi^-$ and $D \rightarrow K_s K^+ K^-$ Dalitz plots

Published results using 2011 data sample (1 fb⁻¹) [PLB 718(2012) 43] Preliminary results using 2012 data sample (2fb⁻¹) [LHCB-CONF-2013-004] GGSZ with $B^+ \rightarrow DK^+$

GGSZ observables: binned approach

Use discrete measurements of δ_D in Dalitz plot bins from CLEO-c: c_i , s_i [PRD82(2010)112006]

$$N(B^{\pm})_{+i} = h_{B^{\pm}} \varepsilon_i [K_{\mp i} + (x_{\pm}^2 + y_{\pm}^2)K_{\pm i} + 2\sqrt{K_iK_{-i}} \{x_{\pm}c_i \mp y_{\pm}s_i\}]$$

$$K_i = \int_i |A_D(m_{+}^2, m_{-}^2)|^2 dm_{+}^2 dm_{-}^2$$

$$r_i = r_B \cos(\delta_B \pm \gamma)$$

$$x_{\pm} = r_B \cos(\delta_B \pm \gamma)$$

$$y_{\pm} = r_B \sin(\delta_B \pm \gamma)$$

$$K_{\pm}y_{\pm} \text{ extracted from a simultaneous fit to the signal yields in each Dalitz-plot bin
Chosen binning optimises γ sensitivity
K_SKK sample adds 2 bins
WN 2013
KN 2013$$

GGSZ results

• Leading source of experimental systematic uncertainty: assumption of NO CPV in $B \rightarrow D\pi$ used to determine efficiency ($\epsilon_i K_i$)

The LHCb γ combination

Input	Observables (A _i)		Charm hadroni	ic parameter	
B⁺ →D(hh)h⁺	$A^{KK}_{h}, R^{KK}_{K/\pi}, A^{\pi\pi}_{h}, R^{\pi\pi}_{K/\pi}$		determined from data but constrained by CLEO, HFAG and D-mixing studies at LHCb		
B⁺ →D(Кπππ)h⁺	$A^{K3\pi} R^{K3\pi} R^{K3\pi} R^{K3\pi}$		Decay		Parameters (α_i)
$B^+ \rightarrow D(K_shh)K^+$	$X_{+} V_{+}$		$B^+ \rightarrow Dh^+$		γ
Charm constraints	±, , 		$B^+ \rightarrow DK^+$		r_{B}^{K} , δ_{B}^{K}
	_		$B^{+} \rightarrow D\pi^{+}$		r_{B}^{π} , δ_{B}^{π}
			$B^+ \rightarrow DK^+ / B^+ \rightarrow D\pi^+$		R _{cab}
Frequentist approach $L(\overrightarrow{\alpha}) = \prod_{i} \exp(-\frac{1}{2}(\overrightarrow{A_{i}}^{obs} - \overrightarrow{A_{i}}))$	$\overrightarrow{\alpha_i}))^{T} V_{i}^{-1} (\overrightarrow{A_i}^{obs} - \overrightarrow{A_i} (\overrightarrow{\alpha_i}))$)	D→Кπ		г _{кπ} , $δ_{Kπ,}$ Γ(D→Kπ)
			D→Κπππ		r _{κ3π} , δ _{κ3π,} κ _{κ3π,} Γ(D→K3π)
			D→KK		A ^{dir} _{CP} (KK)
			$D \rightarrow \pi \pi$		A ^{dir} _{CP} (ππ)
	R		D ⁰ -D ⁰ bar mixin	g	x _{D.,} γ _D
			$0 \le \kappa \le 1$	Coherence $=1 \text{ for } D \rightarrow 2$	factor for D decays -body decays
WIN 2013	Stefania R	licciardi			13

Observables and physics parameters

(including D mixing effects)

CP asymmetries $[f_D = KK, \pi\pi, K\pi, K\pi\pi\pi, 4x2 \text{ observables}]$ + $2r_B^h \kappa \sin(\delta_B^h - \delta_f) \sin \gamma + M_-^h - M_+^h$

$$A_{h}^{f} = \frac{1 + 2r_{B}^{h} r_{B}(c_{B} - c_{f}) \sin \gamma + \alpha_{-}}{1 + (r_{B}^{h} r_{f})^{2} + 2r_{B}^{h} r_{f} \kappa \cos(\delta_{B}^{h} - \delta_{f}) \cos \gamma + M_{-}^{h} + M_{+}^{h}}$$

S K/π ratios [f_D = KK, ππ, Kπ, Kπππ, 4 observables]

$$R_{K/\pi}^{f} = R_{cab} \frac{1 + (r_{B}^{K}r_{f})^{2} + 2r_{B}^{K}r_{f}\kappa\cos(\delta^{K}_{B} + \delta_{f}) + M_{-}^{K} + M_{+}^{K}}{1 + (r_{B}^{\pi}r_{f})^{2} + 2r_{B}^{\pi}r_{f}\kappa\cos(\delta^{\pi}_{B} + \delta_{f}) + M_{-}^{\pi} + M_{+}^{\pi}}$$

Ratio of suppressed and favoured final state [$f_D = K\pi$, $K\pi\pi\pi$, 2x2x2 observables]

$$R_{h}^{\pm f} = \frac{r_{f}^{2} + (r_{B}^{h})^{2} + 2r_{B}^{h}r_{f}\kappa\cos(\delta^{h}_{B} + \delta_{f}\pm\gamma) - [M_{\pm}^{h}]_{sup}}{1 + (r_{B}^{h}r_{f})^{2} + 2r_{B}^{h}r_{f}\kappa\cos(\delta^{h}_{B} - \delta_{f}\pm\gamma) + M_{\pm}^{h}}$$

G Cartesian coordinates $[f_D = K_shh 4 \text{ observables}]$

$$x_{\pm} = r_B^K \cos(\delta_B^K \pm \gamma)$$
$$y_{\pm} = r_B^K \sin(\delta_B^K \pm \gamma)$$

B⁺->DK⁺ GGSZ effects of D-mixing negligible

Α

D

G

L

W

G

S

Ζ

Effect of D⁰-mixing on B decay rates

 \Rightarrow corrections comparable to leading interference term

Other constraints on charm parameters

HFAG – direct CPV in D \rightarrow KK and D \rightarrow $\pi\pi$ affects GLW measurements

 $\begin{array}{l} A_{CP}^{\text{dir}}(KK) = (-0.31 \pm 0.24) \times 10^{-2} \\ A_{CP}^{\text{dir}}(\pi\pi) = (+0.36 \pm 0.25) \times 10^{-2} \end{array} \qquad \begin{array}{l} A_{h}^{KK} \to A_{h}^{KK} + A_{CP}^{dir}(KK) \\ A_{h}^{\pi\pi} \to A_{h}^{\pi\pi} + A_{CP}^{dir}(\pi\pi) \end{array}$

LHCb charm-mixing results on D⁰
$$\rightarrow$$
 K⁺ π^{-}
 $R_D = r_{K\pi}^2$,
 $y'_D = x_D \sin \delta_{K\pi} - y_D \cos \delta_{K\pi}$,
 $x'_D^2 = (x_D \cos \delta_{K\pi} + y_D \sin \delta_{K\pi})^2$

Correlations taken into account in the combination

CLEO $D \rightarrow K^+ \pi^{-}, D \rightarrow K^+ \pi^- \pi^+ \pi^-$

Non-Gaussian 2D likelihood between $\delta_{\mathsf{D}}{}^{K3\pi}$ and $\kappa_{\!K3\pi}$ included in the combination

 x'^{2} [%]

arXiv:1305.2050 Accepted by PLB

$B^{+} \rightarrow Dh^{+} \gamma$ -combination [1 fb⁻¹]

- 2011 data only
- First combination to include $B^+ \rightarrow D\pi^+$
- Result corrected for neglected correlations between systematic uncertainties and undercoverage

Stefania Ricciardi

$B^0 \rightarrow D^0 K^{*0}, D^0 \rightarrow KK$

[JHEP03(2013)067]

Self-tagged mode \Rightarrow time-integrated methods similar to $B^+ \rightarrow D(hh)K^+$ V_{cb} V_{ub} Interfering diagrams both colour suppressed: **B**⁰ **B**⁰ Larger $r_{B}(3x) \Rightarrow$ larger interference Low yields ADS+GLW will be performed with 3fb⁻¹ Candidates / 10 MeV/ c^2 Candidates / 10 MeV/ c^2 16E LHCb 16⊢ LHCb B_s **B**_s Preliminary Preliminary 14 14 **B**⁰ 12 12 В 10 10 6 2 2 0<u></u> 5 $^{0}_{5}$ $M(D_{[K^+K^-]}\overline{K}^{*0}) (\text{GeV}/c^2)$ 5.2 $M(D_{[K^{+}K^{-}]}K^{*0})$ (GeV/c²) 5.6 5.2 5.6 Hint of large asymmetry in $B^0 \rightarrow DK^{0*}$: $A^d_{CP+} = (-47 \pm 25 \pm 2)\%$ No significant asymmetry in $B_s \rightarrow DK^{*0}$: $A^s_{CP+} = (4 \pm 17 \pm 1)\%$

Stefania Ricciardi

1 fb⁻¹

 $B^{0}_{(s)} \rightarrow DK^{+}\pi^{-}$

[PRD, 87(2013)112009]

Dalitz plot analysis of $B^0 \rightarrow DK^+\pi^-$ very promising

- Larger branching fraction
- Exploit fully interference structure

Time-dependent study of $B_s \rightarrow D_s^{+}K^{\pm}$

1 fb⁻¹

 $B_{s} \rightarrow D_{s}^{+}K^{\pm}$ results

[LHCB-CONF-2012-029]

$$B^0_{s} \rightarrow D^0 \phi$$

- $B_s \rightarrow D^0 \phi$ TD is sensitive to γ and β_s
- Both amplitudes colour-suppressed ⇒ small yields
- Time-integrated methods to determine γ also available, promising sensitivity at LHCb

Summary

- LHCb measurement of γ with first year data (1 fb⁻¹)
 - First measurement to include $B^- \rightarrow D\pi^-$ and D-mixing corrections
 - Good agreement and similar sensitivity to B-factories
- Partial update of GGSZ measurement to 3fb⁻¹ combined with B[−]→DK[−] ADS/GLW 1fb⁻¹ leads to best single-experiment measurement

 $\gamma = 67 \pm 12^{\circ}$ PRELIMINARY

Precision will keep improving faster than \sqrt{L} with ADS/GLW 3fb⁻¹ update and the addition of other channels in the combination

ADDITIONAL MATERIAL

The compelling case

New Physics (indirect) search through precise CKM metrology

- Excellent agreement in the overall picture at the current level of precision
- γ from trees : the precise SM reference required to unravel *increasingly subtle* NP effects

Theoretically pristine

■ B→DK tree-dominated amplitude

- Negligible theoretical uncertainties
 - Only irreducible ones from higher order electroweak corrections δγ<O(10⁻⁷) [Brod & Zupan, arXiv:1308.5663]

$B_s \rightarrow D_s^{+}K^{\pm}$: analysis ingredients

Precision tracking and PID:for background suppression*B* mass fit: statistical separationof signal from remaining background

Proper time resolution:

from MC corrected for data/MC differences

Proper time acceptance: a,b,n,β from fit to $B_s \rightarrow D_s \pi$ data $a(t) = \left(1 - \frac{1}{(1 + (at)^n - b)}(1 - \beta t) \quad t > 0.2 ps\right)$