

Marco Taoso

IPhT CEA-Saclay

Dark Matter searches with radio and gamma-rays

WIN 2013

Natal 16-21 September 2013

DM emissions

Final state radiation

Inverse Compton

Synchrotron emission

$$\chi\chi \to q\bar{q} \to \pi^0 + \dots \quad \pi^0 \to \gamma\gamma$$
 $e^{\pm}\gamma \to e^{\pm}\gamma'$

from interactions of electrons with magnetic fields

Plan of the talk

Synchrotron emission and radio observations

- Bounds on DM from present radio surveys
- Extragalactic radio background and searches of extra-galactic DM radio sources
- Based on Fornengo, Lineros, Regis, MT 2011, 2012, 2013 (in progress)

- DM searches with gamma-ray lines
- Status of the 130(5) GeV line
- Gamma-ray lines in DM models
- Based on Jackson, Servant, Shaughnessy, Tait, MT 2010, 2013

Synchrotron radiation

Synchrotron emission from interactions of electrons with magnetic fields

Typical frequency of the synchrotron peak:

$$\nu \sim 30 \text{ MHz } \frac{B}{6\mu G} \left(\frac{E_e}{1GeV}\right)^2$$

Propagation of charged particles

Propagation of charged cosmic-rays described by transport equation which takes into account energy losses, diffusion accelerations, convection

$$\partial_{t} \mathcal{N} - \nabla \cdot \{K(E) \nabla \mathcal{N}\} + \partial_{E} \left\{ \frac{dE}{dt} \mathcal{N} \right\} = \mathcal{Q}(E, \boldsymbol{x}, t)$$

$$\uparrow \qquad \qquad \uparrow$$
diffusion energy losses distribution of sources

Constrain CRs and B with radio

Propagation models tuned against data, notably B/C, radioactive isotopes, protons This leaves degeneracies among the propagation parameters

Radio surveys probe the interstellar electron spectrum and further constrain the propagation model / Magnetic fields

Constrain CRs and B with radio

Morphology and normalization of synchrotron emission (+ info on Magnetic fields) constrain the parameter of propagation models

Models with small scale-height of the diffusion regions are disfavored

Similar conclusions arises from analysis of the diffuse gamma-ray emission from Fermi-LAT

Gamma-ray diffuse from interactions of protons with gas and IC and Brem. of electrons

Synchrotron from DM

Low frequencies are particularly suitable to constrain light DM

Radio surveys from 22 MHz to 1420 MHz

Constraints on DM

Bounds are better/worse than those from Fermi & CMB for leptonic/hadronic channels

Uncertainties:

- DM profile
- propagation parameters
- magnetic fields

N.Fornengo, R.Lineros, M.Regis, M.T. 2011

Isotropic radio background

Isotropic radio background extracted from maps after subtraction of galactic emission

ARCADE-II excess

Low frequencies 22 MHz 45 MHz 408 MHz 1420 MHz + ARCADE-2 3.2 GHz-90 GHz Galactic emission estimated with 2 methods:

plane parallel model & correlation of radio maps with CII map (tracer of galactic emission)

After CMB monopole is removed data an isotropic background is detected below 10 GHz

Number counts of sources

Flux from extragalactic radio sources is a factor 4-5 smaller than IRB obtained by ARCADE!!!!!

Possible explanations

The excess calls for an undetected population of radio sources at fluxes below micro-Jy Interpretations in terms of known astro- sources are challenged by multi-wavelength constraints: gamma-rays, X-rays (diffuse intragalactic emission), IR (star forming galaxies). Not yet a viable scenario on the market.

Singal et al. 2010, Lacki 2010, Ponente 2010, ...

Can DM explain these data?

Forecast for future experiments

DM sources can dominate the number counts of sources at sub micro-Jy fluxes

These fluxes are at the reach of future radio telescopes:

EVLA and ASKAP soon, SKA (long term project)

DM emissions

Final state radiation

Inverse Compton

al state radiation
$$\chi\chi\to q\bar{q}\to\pi^0+...\quad\pi^0\to\gamma\gamma$$
 erse Compton
$$e^\pm\gamma\to e^\pm\gamma'$$

Synchrotron emission

from interactions of electrons with magnetic fields

Spectral features

Typically absent in ordinary astro processes: smoking gun signature for DM

From line(s) energy(s) information on masses of DM
$$E_{\gamma}=M_{DM}\left(1-rac{M_X^2}{4M_{DM}^2}
ight)$$

Loop induced process: typically quite suppressed

Other spectral features: internal bremsstrahlung and gamma-ray boxes

FERMI Line

Bounds on lines from FERMI

Bounds at larger energies from HESS

Fermi-LAT Collaboration 1305.5597

Line at 130 GeV with a global significance > 3-sigma found by several authors

Update from FERMI collaboration:

Smaller statistical significance after data reprocessing + improved energy resolution

Not clear whether systematic effect (why not present outside Galactic center but it appears

at smaller significance in the Limb data?)

DM models & lines

Loop level annihilations are severely suppressed for weak-size interactions

$$\mathcal{O}(\alpha^2) \sim 10^{-4}$$

Take the 130 GeV gamma-ray lines: from the shape of the spectrum bounds on the continuum

$$\frac{(\sigma v)_{WW,f\bar{f}}}{(\sigma v)_{\gamma\gamma}} \lesssim 10 - 100$$

See also Cholis, Tavakoli, Ullio 2012

Continuum should be under control!

Which DM models can we search for with gamma lines?

Forbidden channel scenario

Jackson, Servant, Shaughnessy, Tait, MT 2010

DM has large couplings to new charged particles $\,\psi\,$ via a mediator

 $M_{DM} \lesssim M_{\psi}$ annihilations forbidden today since DM has small velocities in our galaxy

$$v/c \sim 10^{-3}$$

Annihilations occur in the early Universe

$$v/c \sim 10^{-1}$$

Example: scalar resonance

- (1, 2, 1/2): $\psi_{1/2} = (\psi^+, \psi^0)$; (1, 2, -3/2): $\psi_{-3/2} = (\psi^-, \psi^{--})$; (1, 1, -1): $\psi_{-1} = \psi^-$.

DM relic density and no virtually no continuum today through annihilations into ψ pairs in the early universe of through coannihilations In these examples relic density ok and 130 GeV line is reproduced

1-loop annihilations

Different charge assignments

Jackson, Servant, Shaughnessy, Tait, MT 2013

(SU(3), SU(2), U(1))

- (1, 2, 1/2): $\psi_{1/2} = (\psi^+, \psi^0)$;
- (1, 2, -3/2): $\psi_{-3/2} = (\psi^-, \psi^{--})$; (1, 1, -1): $\psi_{-1} = \psi^-$.

	ψ_{-1}	$\psi_{-3/2}$	$\psi_{1/2}$
$\sigma_{\gamma Z}/\sigma_{cont}$	10	0.5	0.02
$\sigma_{\gamma\gamma}/\sigma_{cont}$	30	1	0.04

Example with top mediation

New vector-like fermion mixes with SM top quark via mass mixing

$$yH\bar{\hat{Q}}_3\hat{t}_R + \mu\bar{\psi}_L\psi_R + Y\Phi\bar{\psi}_L\hat{t}_R$$

$$\begin{pmatrix} t_{R/L} \\ T_{R/L} \end{pmatrix} = \begin{pmatrix} -\sin\theta_{R/L} & \cos\theta_{R/L} \\ \cos\theta_{R/L} & \sin\theta_{R/L} \end{pmatrix} \begin{pmatrix} \hat{t}_{R/L} \\ \Psi_{R/L} \end{pmatrix} \qquad M_T = m_t \frac{\tan\theta_L}{\tan\theta_R}$$

Signal cross sections

Jackson, Servant, Shaughnessy, Tait, MT 2013

Small top-T mixing

200

Numerous continuum channels are induced at 1-loop.

The ratio line/continuum can be kept under control

ratio $M_{v} = 150 \text{ GeV}, \text{ y} < h > = 180 \text{ GeV}, \text{ Y} < \Phi > = 250 \text{ GeV}$ $M_v = 150 \text{ GeV}, M_{Z'} = 330 \text{ GeV}, M_{\Phi} = 1.5 M_{Z'}, g_{Z'} = 3$ $M_T = 993 \text{ GeV}, M_{\Phi} = M_{Z'}, g_{Z'} = 3.0$ 10^{-21} 400 $ratio=10^{-3}$ 10^{-22} ratio=10⁻² 350 10^{-23} ratio= $4 \, 10^{-2}$ ratio= $5 \ 10^{-2}$ 10^{-24} 300 $ratio=10^{-1}$ 10^{-25} $Y < \Phi > [GeV]$ 250 $ov [cm^3/s]$ 10^{-26} 10^{-27} 200 10^{-28} =450 GeV 150 10^{-29} CLUDED 10^{-30} **EWPT** 100 10^{-31} 10^{-32} 50 10^{-33} 400 500 100 200 300 600 700 800 180 185 190 175 195 $M_{Z'}$ [GeV] $y_t < h > [GeV]$ Large top-T mixing

Outlook

Radio observations give bound on the WIMPs parameter space complementary to those from gamma-rays

In addition they provide an handle to understand the propagation of charged cosmic-rays in the galaxy, a key ingredient for searches of DM diffuse emissions.

WIMPs annihilation into gamma-rays are precious probe of DM

Large signals can arise in models where annihilations are enhanced by resonance

effects and the continuum is forbidden/suppressed

These features are captured in simple models with scalar/vector mediators and new charged particles.