The race for the neutrino mass hierarchy

Pilar Coloma

Center for Neutrino Physics Virginia Tech

> WIN13 Natal, Brazil Sep 17, 2013

Current status in neutrino oscillations

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 1 \end{pmatrix}$$

Atmospheric

Interference

Solar

Known:

$$\theta_{12} = 33.36^{\circ}$$
 $\theta_{23} = 40^{\circ}/50.4^{\circ}$
 $\theta_{13} = 8.66^{\circ}$
 $\Delta m_{21}^{2} = 7.5 \times 10^{-5} \text{eV}^{2}$
 $\Delta m_{31}^{2} = 2.47 \times 10^{-3} \text{eV}^{2} \text{(for NH)}$

Unknown

$$\delta \neq 0, \pi$$
?

$$m_3 \geqslant m_2$$
?

$$\delta \neq 0, \pi$$
?

 $m_3 \geq m_2$?

 $\theta_{23} \geq 45^\circ$?

Gonzalez-Garcia, Maltoni, Salvado, Schwetz, 1209.3023 [hep-ph] (See Gonzalez-Garcia's plenary talk on Monday)

Unknown

$$\delta \neq 0, \pi$$
?

$$\delta \neq 0, \pi?$$

$$m_3 \geqslant m_2?$$

$$\theta_{23} \ge 45^{\circ}?$$

The measured parameter which currently holds the largest uncertainty. Important for the flavor puzzle:

- bimaximal, tri-bimaximal, etc
- golden ratio
- quark-lepton complementarity

Unknown

$$\delta \neq 0, \pi$$
?

$$m_3 \geqslant m_2$$

$$m_3 \gtrless m_2$$
?
 $\theta_{23} \gtrless 45^{\circ}$?

- Is CP violated only in the quark sector?

- Is leptogenesis viable?

- Model building

Note that an appearance experiment is needed to observe CP violation

Unknown

$$\delta \neq 0, \pi$$
?

$$m_3 \geqslant m_2$$
?

$$m_3 \geqslant m_2$$
?
 $\theta_{23} \gtrsim 45^\circ$?

Unknown

$$\delta \neq 0, \pi$$
?

$$m_3 \geqslant m_2$$
?

$$\theta_{23} \gtrsim 45^{\circ}$$
?

An independent measurement of the hierarchy is extremely useful as a double-check of $0\nu\beta\beta$

(see, for instance, Blennow et al, 1005.3240 [hep-ph])

Unknown

$$\delta \neq 0, \pi$$
?

$$m_3 \geqslant m_2$$
?

$$\theta_{23} \gtrsim 45^{\circ}$$
?

An unknown hierarchy usually leads to a reduced ability to observe CP violation

Minakata, Nunokawa, hep-ph/0108085 Barger, Marfatia, Whisnant, hep-ph/0112119

$$P_{e\mu}^{\pm}(\theta_{13}, \delta) = X_{\pm} \sin^2 2\theta_{13}$$

$$+ Y_{\pm} \cos \theta_{13} \left[\sin 2\theta_{13} \cos \left(\pm \delta - \frac{\Delta m_{31}^2 L}{4E} \right) + Z \right]$$

Ways to measure the hierarchy

A large θ_{13} opens many ways to measure the hierarchy:

- i. Matter effects
 - In appearance \rightarrow beams (at lower energies)
 - In disappearance \rightarrow atmospheric neutrinos
- ii. Interference effects between solar and atmospheric oscillations \rightarrow reactors at medium baselines
- iii. Precise measurement of the two squared mass splittings

Additional possible ways are cosmology and supernovae (see Chakraborty's talk this morning), but I will not cover them in this talk

(i-a) Matter effects in appearance (beams)

Wolfenstein ('78), Barger et al ('80), Mikheev and Smirnov ('85)

(i-a) Matter effects in appearance (beams)

(i-a) Matter effects in appearance (beams)

(i-b) Matter effects in disappearance

Bañuls, Barenboim, Bernabéu, hep-ph/0102184 Bernabéu, Palomares-Ruiz, Pérez, Petcov, hep-ph/0110071

$$P_{\mu\mu}^{\pm}(\theta_{13},\delta) = 1 - \chi_{\pm} \sin^2 2\theta_{13} - \psi_{\pm} \sin 2\theta_{13} \cos \delta - \omega$$

(i-b) Matter effects in disappearance

PINGU

See also: ORCA (talk at NuFact'13);

Hyper-Kamiokande (see talk at RENO-50 workshop in June 2013);

Barger et al, 1203.6012[hep-ph] (50 kt LAr det.)

PINGU coll., 1306.5846 (see also the talk by Kapess in WG4) (see also Mena, Mocioiu, Razzaque, 0803.3044[hep-ph] and Akhmedov, Razzaque, Smirnov, 1205.7071 [hep-ph])

(i-b) Matter effects in disappearance

(ii) Reactor experiment at medium baseline

Zhan, Wang, Cao and Wen, 0807.3203 [hep-ph]

(ii) Reactor experiment at medium baseline

Two major proposals: RENO-50 and JUNO

Technical challenges:

- energy resolution
- energy non-linearity
- reactor distribution

See also:

Zhan et al, 0807.3203, 0901.2976 Qian et al, 1208.1551 Kettell et al, 1307.7419 Learned et al, hep-ex/0612022 Ciuffoli et al, 1209.2227,1308.0591

. . .

(iii) Precise measurements of mass splittings

The difference between the two mass splittings is due to a non-vanishing Δm^2_{21}

Assumed errors of $\sim 0.3~(\sin^2\!2\theta_{_{13}}/0.1)\%$ on Δm^2_{ee} and 0.5% on $\Delta m^2_{\mu\mu}$

Nunokawa, Parke, Zukanovich Funchal, hep-ph/0503283 Minakata, Nunokawa, Parke, Zukanovich Funchal, hep-ph/0607284 De Gouvea, Jenkins, Kayser, hep-ph/0503079 (see also Li, Cao, Wang, Zhang, 1303.6733 [hep-ph])

(iii) Precise measurements of mass splittings

Physics in this case is more complicated, but the observable effect is similar. Effect remains even if $\Delta m_{21}^2 = 0$

Blennow, Schwetz, 1306.3988 [hep-ph]

Literature survey

Conclusions

- The large value of θ_{13} recently measured has open a door to measure the hierarchy in many different ways
- Huge number of possibilities (short-, mid- and longterm): PINGU, ORCA, HyperK, JUNO, RENO50, ICAL, NOvA, LBNE,...
- Synergies between different proposals exist.
 Combinations can be very effective!
- If the hierarchy is known, we may want to optimize long baseline oscillation experiments differently

Thank you!

Backup

Statistical issues

-2

2

Qian et al, 1210.3651 (see also Ciuffoli et al, 1305.5150)

(i-a+b) Combining different experiments

Blennow, Schwetz, 1203.3388 [hep-ph] (see also Ghosh, Thakore, Choubey, 1212.1305 [hep-ph])

PINGU

Zenith resolution: 12.5° Energy resolution 3 GeV

Perfect detector resolution

K Clark, talk at NuFact'13

Hyper-K

Data taking could start in 2023. Combination with long baseline data would further enhance the sensitivity

(See Shoei Nakayama talk at "International workshop on RENO-50 towards Neutrino Mass Hierarchy", June 2013)

(ii) Reactor experiment at medium baseline

Petcov, Piai, hep-ph/01102074 Choubey, Petcov, Piai, hep-ph/0306017

$$P_{ee} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$$

$$- \sin^2 2\theta_{13} \sin^2 \Delta_{31}$$

$$- \sin^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{21} \cos 2\Delta_{31}$$

$$\pm \frac{1}{2} \sin^2 \theta_{12} \sin^2 2\theta_{13} \sin 2\Delta_{21} \sin 2\Delta_{31}$$

Ge, Hagiwara, Okamura, Takaesu, 1210.8141 [hep-ph]

$$\Delta_{ij} \equiv \frac{|\Delta m_{ij}^2|L}{4E}$$

(ii) Reactor experiment at medium baseline

KamLAND coll., hep-ex/0212021

RENO50

10 Kton liquid scintillator
L~47 km (very close to optimal)
RENO used as near detector
Data taking expected to start in
2019

JUNO

20 Kton liquid scintillator
L=53 km (very close to optimal)
2 reactors, each of them with
P~18 GW
Data taking expected to start in
2020

(i) Matter effects in disappearance

ORCA

Thomas Eberl, talk at NuFact'13

(ii) Reactor experiment at medium baseline

Precise measurements of mass splittings

$$\Delta m^2(\alpha \alpha) = r_{\alpha} |\Delta m_{31}^2| + (1 - r_{\alpha}) |\Delta m_{32}^2|$$

$$r_{\alpha} \equiv \frac{|U_{\alpha 1}|^2}{|U_{\alpha 1}|^2 + |U_{\alpha 2}|^2} \,.$$

$$\Delta_{e\mu} \equiv \Delta m^2(ee) - \Delta m^2(\mu\mu) = (r_e - r_\mu)(|\Delta m_{31}^2| - |\Delta m_{32}^2|).$$

$$r_e - r_{\mu} = \cos 2\theta_{12} - \cos \delta \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23} + \mathcal{O}(\sin^2 \theta_{13})$$

$$|\Delta m_{31}^2| - |\Delta m_{32}^2| = \pm \Delta m_{21}^2$$

Minakata, Nunokawa, Parke, Zukanovich Funchal, hep-ph/0607284

Precise measurements of mass splittings

Minakata, Nunokawa, Parke, Zukanovich Funchal, hep-ph/0607284

Impact on T2K/NOvA

NOvA's whitepaper for SNOWMASS 2013 (See also 1201.6485 [hep-ph])

LBNE phase I

