Studies of \mathcal{CP} violation using semileptonic *B* decays WIN 2013

Thomas Bird on behalf of LHCb Collaboration

University of Manchester

September 17, 2013

MANCHESTER 1824

• Two flavour eigenstates $|B^0\rangle$ and $|\overline{B^0}\rangle$, of a B^0 system $(B^0_d \text{ or } B^0_s)$

• Mixing described by off-diagonal elements M_{12} and Γ_{12} in \hat{M} and $\hat{\Gamma}$

$$i\frac{d}{dt}\left(\begin{array}{c}|\underline{B}^{0}\rangle\\|\overline{B}^{0}
ight
angle
ight) = \left(\hat{M} - \frac{i}{2}\hat{\Gamma}
ight)\left(\begin{array}{c}|\underline{B}^{0}
ight
angle
ight)$$

- Diagonalisation of \hat{M} and $\hat{\Gamma}$ gives mass eigenstates, $|B_L
angle$ and $|B_H
angle$

$$|B_L\rangle = p|B^0\rangle + q|\overline{B^0}
angle \ |B_H
angle = p|B^0
angle - q|\overline{B^0}
angle$$

- Leading to three observables describing CPV in mixing...
 - Mass differences, $\Delta m = M_H M_L \approx 2|M_{12}|$
 - Decay width differences, $\Delta \Gamma = \Gamma_L \Gamma_H \approx 2|\Gamma_{12}|\cos(\phi)$
 - Flavour specific asymmetries, $a_{fs} = -2\left(\left|\frac{q}{p}\right| 1\right) = \text{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)$
 - ★ Non-zero value leads to CP-violation in B mixing
- Focus on the flavour specific asymmetries a_{fs}^s and a_{fs}^d
 - Along with a not-so-brief diversion on Δm_s and Δm_d

$$\begin{split} & \text{SM predictions [arXiv:1205.1444]} \\ & a_{fs}^s = (1.9\pm0.3)\times10^{-5} \quad a_{fs}^d = -(4.1\pm0.6)\times10^{-4} \\ & \Delta m_s = (17.30\pm2.6)\,\mathrm{ps^{-1}} \quad \Delta m_d = (0.543\pm0.091)\,\mathrm{ps^{-1}} \end{split}$$

- LHCb has two measurements of a_{fs}^s and a_{fs}^d in the pipeline
- Completed time-integrated a_{fs}^s measurement [LHCB-PAPER-2013-033]
- **2** Ongoing time-dependent a_{fs}^d measurement
- Completed time-dependent mixing analysis [LHCB-PAPER-2013-036]

Magnet Polarity Up/Down

Magnet

Time-integrated a_{fs}^s

Thomas Bird (Manchester)

Semileptonic CPV

September 17, 2013 Slide 7

Slide 7 of 25

- Look at decay of $B_s^0 o D_s^- \mu^+ \nu$, where $D_s^- o \phi \pi^-$ and $\phi o K^+ K^-$
- Measure untagged final state charge asymmetry
- Aim for error on measurement to be of the order of 10^{-3}

$$\frac{N(D^{-}\mu^{+}) - N(D^{+}\mu^{-})}{N(D^{-}\mu^{+}) + N(D^{+}\mu^{-})}$$
$$= \frac{a_{fs}^{s}}{2} + \left(a_{p} + \frac{a_{fs}^{s}}{2}\right) \frac{\int_{0}^{\infty} e^{-\Gamma_{s}t} \cos\left(\Delta m_{s}t\right) \varepsilon(t) dt}{\int_{0}^{\infty} e^{-\Gamma_{s}t} \cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \varepsilon(t) dt}$$

- Integral ratio $\approx 0.2\%$ from MC
- $a_p(B_s^0) \approx 1\%$ [lhcb-paper-2011-029]

MANCHEST

- Look at decay of $B^0_s o D^-_s \mu^+ \nu$, where $D^-_s o \phi \pi^-$ and $\phi o K^+ K^-$
- Measure untagged final state charge asymmetry
- Aim for error on measurement to be of the order of 10^{-3}

$$\frac{N(D^{-}\mu^{+}) - N(D^{+}\mu^{-})}{N(D^{-}\mu^{+}) + N(D^{+}\mu^{-})}$$
$$= \frac{a_{fs}^{s}}{2} + \left(a_{p} + \frac{a_{fs}^{s}}{2}\right) \frac{\int_{0}^{\infty} e^{-\Gamma_{s}t} \cos\left(\Delta m_{s}t\right)\varepsilon(t)dt}{\int_{0}^{\infty} e^{-\Gamma_{s}t} \cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right)\varepsilon(t)dt}$$

- Integral ratio $\approx 0.2\%$ from MC
- $a_p(B_s^0) \approx 1\%$ [LHCB-PAPER-2011-029]

MANCHEST

- Look at decay of $B^0_s \to D^-_s \mu^+ \nu$, where $D^-_s \to \phi \pi^-$ and $\phi \to K^+ K^-$
- Measure untagged final state charge asymmetry
- Aim for error on measurement to be of the order of 10^{-3}

$$\frac{N(D^{-}\mu^{+}) - N(D^{+}\mu^{-})}{N(D^{-}\mu^{+}) + N(D^{+}\mu^{-})}$$

$$= \frac{a_{fs}^{s}}{2} + \underbrace{\left(a_{p} + \frac{a_{fs}^{s}}{2}\right) \frac{\int_{0}^{\infty} e^{-\Gamma_{s}t} \cos\left(\Delta m_{s}t\right)\varepsilon(t)dt}{\int_{0}^{\infty} e^{-\Gamma_{s}t} \cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right)\varepsilon(t)dt}}$$

$$\approx \frac{a_{fs}^{s}}{2}$$

- $0.2\% \times 1\% \sim 10^{-5}$ can ignore this term

MANCHEST

$$A_{meas} = \frac{N\left(D^{-}\mu^{+}\right)/\varepsilon\left(\mu^{+}\right) - N\left(D^{+}\mu^{-}\right)/\varepsilon\left(\mu^{-}\right)}{N\left(D^{-}\mu^{+}\right)/\varepsilon\left(\mu^{+}\right) + N\left(D^{+}\mu^{-}\right)/\varepsilon\left(\mu^{-}\right)} - A_{\text{track}} - A_{\text{bkg}} \approx \frac{a_{fs}^{s}}{2}$$

- First term is corrected asymmetry, A^{μ}_{c}
- Muon PID and trigger efficiency
- Charge asymmetry due to tracking
- Charge asymmetry due to backgrounds

- Efficiency measured in two sets of momentum bins
- Using two $J/\psi \rightarrow \mu^+\mu^-$ samples

[LHCb-CONF-2012-022] [LHCB-PAPER-2013-033]

- Residual asymmetry due to alignment of muon stations
- Mostly affects hardware trigger

$$A_c^\mu = (+0.04 \pm 0.25)\%$$

[LHCB-PAPER-2013-033]

MANCHESTE

Muon sample 1 (KS)			Muon sample 2 (MS)			
Binning	Mag-Up	Mag-Down		Binning	Mag-Up	Mag-Down
$pp_x p_y$	$+0.38\pm0.38$	-0.17 ± 0.32		$pp_x p_y$	$+0.64\pm0.37$	-0.60 ± 0.32
$pp_t\phi$	$+0.30\pm0.38$	-0.25 ± 0.32		$pp_t\phi$	$+0.63\pm0.37$	-0.62 ± 0.32
Avg.	$+0.34\pm0.27$	-0.21 ± 0.23		Avg.	$+0.64\pm0.26$	-0.61 ± 0.23

- MANCHESTER 1824
- Select $D^{*\pm}
 ightarrow \pi^+ D^0 (K^- \pi^+ \pi^+ \pi^-)$, with a pion missing
- Use kinematic constraints to find pion [PLB 713 (2012) 186]
- Count fully (a) and partially (b) reconstructed events, calculate asymmetry

- After kinematic re-weighting, $A_{
 m track}(\pi^{\pm}\mu^{\mp})=(0.01\pm0.13)\%$
- s-wave contribution causes differences in K^+ and K^- momentum

$$\frac{N\left(D^{-} \to K^{+}\pi^{-}\pi^{-}\right)}{N\left(D^{+} \to K^{-}\pi^{+}\pi^{+}\right)} \times \frac{N\left(D^{+} \to K_{s}^{0}\pi^{+}\right)}{N\left(D^{-} \to K_{s}^{0}\pi^{-}\right)} = \frac{\varepsilon\left(K^{+}\pi^{-}\right)}{\varepsilon\left(K^{-}\pi^{+}\right)}$$

• $A_{\mathrm{track}}(K^+K^-) = (0.012 \pm 0.004)\%$ [LHCB-PAPER-2013-033]

• 2D fit used to estimate prompt D_s^+ background

- Average over magnet polarities: $A_{
 m bkg}^{
 m prompt} = (+0.04\pm0.04)\%$
- μ and D_s^+ from other *b*-decays, $A_{
 m bkg}^{
 m other} = (0.01 \pm 0.04)\%$
- b-decays with fake muons, $A_{
 m bkg}^{
 m misid} < 0.01\%$ [LHCB-PAPER-2013-033]

MANCHEST

LHCD Time-integrated results

Source	$\sigma(A_{\rm meas})\%$
Tracking asymmetry	0.13
Muon efficiency	0.08
Fitting model	0.07
Background asymmetry	0.05
Software trigger bias	0.05
Run conditions	0.01
Total	0.18

MANCHESTER 1824

$$A_{
m meas} = (-0.03 \pm 0.25 \pm 0.18)\%$$

 $pprox rac{a_{fs}^{s}}{2}$

LHCb :
$$a_{fs}^{s} = (-0.06 \pm 0.50 \pm 0.36)\%$$

SM : $a_{fs}^{s} = (0.0019 \pm 0.0003)\%$

[LHCB-PAPER-2013-033]

MANCHESTER 1824

- · More recent analysis, building on previous analysis
- Uses $B^0_d
 ightarrow D^- \mu^+
 u$ decays, where $D^-
 ightarrow K^+ \pi^- \pi^-$

$$= \frac{N(D^{-}\mu^{+}) - N(D^{+}\mu^{-})}{N(D^{-}\mu^{+}) + N(D^{+}\mu^{-})}$$
$$= \frac{a_{fs}^{d}}{2} + \left(a_{p} + \frac{a_{fs}^{d}}{2}\right) \frac{\int_{0}^{\infty} e^{-\Gamma_{d}t} \cos\left(\Delta m_{d}t\right)\varepsilon(t)dt}{\int_{0}^{\infty} e^{-\Gamma_{d}t} \cosh\left(\frac{\Delta\Gamma_{d}t}{2}\right)\varepsilon(t)dt}$$

- B_d system has slow oscillations, integral ratio is no longer small
- Must perform time-dependent analysis
- Use similar corrections to first analysis

MANCHE

- Measure Δm_s and Δm_d on the way to a_{fs}^d [LHCB-PAPER-2013-036]
- Using D_{s}^{-} cabibo favoured decay to $K^{-}K^{+}\pi^{+},$ need lots of events for Δm_{s}
- Also selects peaking background $B^+
 ightarrow D^- \mu^+ (
 u, \pi^+, \gamma)$

Normalised *B* mass :
$$n = \frac{M_{rec}(B) - M_0(D) - M_0(\mu)}{M_0(B) - M_0(D) - M_0(\mu)}$$

Missing momentum correction

- Missing particles in decay \rightarrow missing momentum
- To measure decay time, need to know momentum

MANCHESTER

- Apply an average correction from MC, called *k*-factor
- k = p^{rec}/p^{true} parametrised as function of B mass

HCP Time dependent resolution

- $au \sim$ 0 ps small vertex resolution dominates
- $\tau > 0 \, {\rm ps}$ resolution from missing momentum dominates

[LHCB-PAPER-2013-036]

MANCHESTER

- RooFit binned log likelihood fit performed in three dimensions:
 - ► KKπ-mass
 - corrected lifetime of the B
 - B flavour tag
 - * Standard LHCb *B* flavour tagging is used [CERN-THESIS-2012-075]
- Simultaneously fit in two B mass categories n < 0.56 and n > 0.56
 - Improves resolution, to see B_s^0 oscillations [LHCB-PAPER-2013-036]

- Subtract Fourier spectra of two flavour tags [LHCB-PAPER-2013-036]
 - Suppresses acceptance and lifetime effects

- $\Delta m_s = 17.95 \pm 0.40 (\text{rms}) \pm 0.11 (\text{syst}) \text{ ps}^{-1}$
- Δm_d difficult to extract, heavily biased
- Methods demonstrate time-dependent a^d_{fs} analysis will be possible

MANCHESTE

- Measured a^s_{fs} consistent with SM
- LHCb : $a_{fs}^{s} = (-0.06 \pm 0.50 \pm 0.36)\%$ SM : $a_{fs}^{s} = (0.0019 \pm 0.0003)\%$
- Measurement of a^d_{fs} possible and on its way

• First observation of B_s^0 mixing using only semileptonic decays

$$\Delta m_s = (17.93 \pm 0.22 (\text{stat}) \pm 0.15 (\text{syst})) \,\text{ps}^{-1}$$

$$\Delta m_d = (0.503 \pm 0.011(\text{stat}) \pm 0.013(\text{syst})) \,\text{ps}^{-1}$$

Click to listen to mixing on YouTube

Thomas Bird (Manchester)

Semileptonic CPV

September 17, 2013 Slide 25 of 25

Backup slides

Slide 26 of 25

- Standard LHCb *B* flavour tagging is used [CERN-THESIS-2012-075]
- For B_s^0 decays both opposite and same side taggers are applied
- While for B^0 decays only the opposite side taggers are used
 - Minimises the difference between the tagging of B^+ and B^0 decays
- Mistag fraction is allowed to float in the fit

Source of uncortainty	Systematic uncertainty		
Source of uncertainty	$\Delta m_s \ [\mathrm{ps}^{-1}]$	$\Delta m_d \; [{ m ps}^{-1}]$	
$B^+ ightarrow D^+$ (BR, efficiency, tagging)	n/a	0.008	
signal proper-time model	0.09	0.007	
k-factor	0.06	0.0052	
model bias	0.09	0.0055	
other models and binning	0.05	0.001	
detector alignment	0.03	0.0008	
values of $\Delta\Gamma$	n/a	0.0004	
total systematic uncertainty	0.15	0.013	
total statistical uncertainty	0.22	0.011	

- $B^+ \rightarrow D^+$ (BR, efficiency, tagging)
 - ► B⁺ background fixed from MC, vary its parameters: lifetime, fraction and relative tagging performance

MAN	CH	ESTER
		1824

Source of uncortainty	Systematic uncertainty		
Source of uncertainty	$\Delta m_s ~[{ m ps}^{-1}]$	$\Delta m_d \; [{ m ps}^{-1}]$	
$B^+ ightarrow D^+$ (BR, efficiency, tagging)	n/a	0.008	
signal proper-time model	0.09	0.007	
k-factor	0.06	0.0052	
model bias	0.09	0.0055	
other models and binning	0.05	0.001	
detector alignment	0.03	0.0008	
values of $\Delta \Gamma$	n/a	0.0004	
total systematic uncertainty	0.15	0.013	
total statistical uncertainty	0.22	0.011	

• Signal proper time model

- Different implementation of signal decay time model
- Resolution parametrised by true decay time or with no dependence

Source of upcortainty	Systematic uncertainty		
Source of uncertainty	$\Delta m_s ~[{ m ps}^{-1}]$	$\Delta m_d \; [{ m ps}^{-1}]$	
$B^+ ightarrow D^+$ (BR, efficiency, tagging)	n/a	0.008	
signal proper-time model	0.09	0.007	
k-factor	0.06	0.0052	
model bias	0.09	0.0055	
other models and binning	0.05	0.001	
detector alignment	0.03	0.0008	
values of $\Delta \Gamma$	n/a	0.0004	
total systematic uncertainty	0.15	0.013	
total statistical uncertainty	0.22	0.011	

• *k*-factor

- ► Taken from MC, if MC not accurate correction will be baised
- ► A large toy study determines possible bias if incorrect *k*-factor is used

Source of upcortainty	Systematic uncertainty		
Source of uncertainty	$\Delta m_s \ [\mathrm{ps}^{-1}]$	$\Delta m_d \; [{ m ps}^{-1}]$	
$B^+ ightarrow D^+$ (BR, efficiency, tagging)	n/a	0.008	
signal proper-time model	0.09	0.007	
k-factor	0.06	0.0052	
model bias	0.09	0.0055	
other models and binning	0.05	0.001	
detector alignment	0.03	0.0008	
values of $\Delta\Gamma$	n/a	0.0004	
total systematic uncertainty	0.15	0.013	
total statistical uncertainty	0.22	0.011	

• Model bias

- A small residual bias of $\sim 1\%$ on Δm is seen in MC
- This is corrected for and half of correction is applied as systematic