

Recent results from T2K on neutrino interaction

Tatsuya Kikawa (Kyoto University) on behalf of the T2K collaboration WIN13 @Natal Sep. 20, 2013

The T2K experiment

T2K Near detectors

(Off-axis)

ND280

- » High intensity neutrino beam from J-PARC.
- » Super-Kamiokande, located 295km from neutrino generation point.
- » ND280 (off-axis) and INGRID (on-axis) located 280m from neutrino generation point.

$v_{\mu} \rightarrow v_{e}$ observation

- » T2K has made the first observation of $v_{\mu} \rightarrow v_{e}$ oscillation. (7.5 σ) <u>https://indico.cern.ch/getFil</u> <u>e.py/access?contribId=9&se</u> <u>ssionId=1&resId=0&materia</u> <u>IId=slides&confId=234536</u>
- Uncertainty of neutrino interactions is the dominant systematic error source.
- Precise measurement of neutrino interactions will have a big impact on oscillation precision in the future.

Systematic errors on the number of $\nu_{\rm e}$ candidates

Error source	sin ² 20 ₁₃ =0.0	sin ² 20 ₁₃ =0.1
Beam flux + ν int. in T2K fit	4.9%	3.0%
<u>v int. (other experiments)</u>	<u>6.7%</u>	<u>7.5%</u>
Far detector	7.3%	3.5%
Total	11.1%	8.8%

ND280 (off-axis near detector)

- UA1 dipole magnet **>>**
 - Provide 0.2T magnetic field.
- » π^0 detector (POD)
 - Water target section(center): water, scintillator and brass. lacksquare
 - ECal sections (upstream and downstream): scintillator and lead. lacksquare

Upstream Water Target

Legend Wavelength-shifting Fiber Scintillator Water

> Brass Light-tight Cover

> > Lead

Central ECal

Central Water Target

ND280 (off-axis near detector)

- » Tracker (FGD+TPC)
 - The Fine Grained Detector (FGD) consists of layers of 10×10mm plastic scintillator bars.
 - FGDs provide target mass and vertex reconstruction.
 - The Time Projection Chambers (TPCs) provide PID based on dE/dx and momentum based on the track curvature.

INGRID (on-axis near detector) 16 standard INGRID modules. **>>** Sandwich structure of iron and scintillators. Mass ratio of iron is 95%. ~10m » 1 extra module, (Proton Module). 1.5m **Beam center** Full scintillator module. ~10m INGRID **INGRID** Proton Module vertical modules **Proton Module INGRID** horizontal modules

Neutrino interaction around 1GeV

- » T2K uses NEUT and GENIE to generate neutrino interaction.
 - <u>Charged current quasi-elastic (CCQE)</u> $\nu_{\mu} + n \rightarrow \mu^{-} + p$
 - Neutral current elastic (NCE) T2K signal mode $\nu_{\mu} + N \rightarrow \nu_{\mu} + N$
 - Single π, η, K resonance production $\nu_{\mu} + N \rightarrow l + N' + \pi(\eta, K)$
 - Coherent π production
 - Deep inelastic scattering (DIS)

Measurements with tracker

- » Select events with μ^- .
 - Upstream veto cut.
 - Negative charge track starting from the FGD fiducial volume to TPC.
 - Particle identification with TPC dE/dx.
- » CC purity = 87%, CC efficiency = 50%.

Flux averaged CC-inclusive cross section

We get

 $\langle \sigma_{CC} \rangle_{\Phi} = (6.91 \pm 0.13(stat.) \pm 0.84(syst.)) \times 10^{-39} \frac{\text{cm}^2}{\text{m}^2}$ nucleon

- Uncertainty of neutrino flux 10~15% is the dominant error source for all measurements. CC-inclusive cross section $\times 10^{-38}$
- » It agrees with the existing model predictions.
 - $\langle \sigma_{CC}^{NEUT} \rangle_{\Phi}$
 - cm² $= 7.27 \times 10^{-39}$
 - $\langle \sigma_{CC}^{GENIE} \rangle_{\Phi}$

$$= 6.54 \times 10^{-39} \frac{\mathrm{cm}^2}{\mathrm{nucleor}}$$

Phys. Rev. D 87, 092003 (2013)

Differential CC-inclusive cross section

Measured $p_{\mu} - \theta_{\mu}$ distribution is converted to true $p_{\mu} - \theta_{\mu}$ distribution by unfolding procedure. Phys. Rev. D 87, 092003 (2013) $\times 10^{-42}$ $\times 10^{-42}$ $15 - 0 < \cos \theta_{\mu} < 0.84$ $\left(\frac{\text{cm}^2}{\text{nucleon MeV/c}}\right)$ $0.90 < \cos \theta_{\mu} < 0.94$ nucleon MeV/c **−**∎− Data — Data Systematic Error Systematic Error cm^2 Statistical Error Statistical Error NEUT NEUT 1010GENIE GENIE dp dcos0 $\frac{d^2 \sigma}{dp \, d\cos\theta}$ $d^2\,\sigma$ 1500 1500 500 1000 2000 500 1000 2000 p_{μ} (MeV/c) p_{μ} (MeV/c) $\times 10^{-42}$ $\times 10^{-42}$ $0.84 < \cos \theta_{\mu} < 0.90$ $0.94 < \cos\theta_{\mu} < 1$ cm² nucleon MeV/c nucleon MeV/c – Data Data Systematic Error Systematic Error cm^2 Statistical Error Statistical Error NEUT NEUT 1010---- GENIE ----- GENIE $\frac{d^2\,\sigma}{dp\,dcos\theta} \bigg($ $\frac{d^2 \sigma}{dp \ dcos \theta} \Big($ 1500 500 1000 2000 500 1500 2000 1000 p_{μ} (MeV/c) p_{μ} (MeV/c)

CCQE selection with tracker

- Select event with 1 μ^- and no π .
 - μ^- event selection (described before).
 - Only one track from FGD to TPC.
 - No delayed energy deposition from Michel electrons.

» CCQE purity = 72%, CCQE efficiency = 40%.

Number of TPC-FGD tracks

CCQE cross section

- » χ^2 test gives a p-value of 17%. \rightarrow Good agreement with our model.
- » Best fit M_A^{QE} value, $1.26^{+0.21}_{-0.18}$ GeV, is consistent with our model, 1.21GeV.

CCQE cross section

0.4

 $\cos(\theta_{\mu})$

NC elastic selection with POD

- » Event selection
 - Vertex in fiducial volume.
 - PID for the end of the track.
 - PID for the beginning of track.
 - No Michel electrons.
- » NC elastic purity = 46%,
 - NC elastic efficiency = 14%.

Flux averaged NC elastic cross section

» The cross section result is compatible with the model predictions.

Ongoing studies

- » Measurements with ND280 tracker.
 - CC1 π^+ cross section measurement.
 - CC-coherent π cross section measurement.
- » Measurements with ND280 P0D.
 - CC1 π^+ cross section measurement.
 - NC elastic differential measurement (water-in water-out).
- » Measurements with INGRID (+ Proton Module).
 - CC-inclusive cross section measurement.
 - + Flux averaged.
 - + In bins of E_{ν} .
 - CCQE cross section measurement.
 - CC-coherent π cross section measurement.

Flux averaged CC-inclusive cross section with INGRID

Fe target for INGRID module, CH target for Proton Module. **>>**

- » Measurement of CC-inclusive cross section on Fe and CH.
 - CC purity = 88%, CC efficiency = 43% for INGRID module.
 - CC purity = 87%, CC efficiency = 41% for Proton Module.
- » Measurement of CC-inclusive cross section ratio on Fe/CH.

 E_{ν} (GeV)

Variation of cross section result [%]

CCQE cross section with Proton Module

- T2K on-axis neutrinos are distributed on 0~4GeV.
 (higher and wider than off-axis neutrinos.)
- » MiniBooNE and SciBooNE CCQE results can be verified.
- » Unmeasured CCQE cross section on $2 \sim 3$ GeV can be measured.
- » CCQE purity = 79%, CCQE efficiency = 31%.

Summary

- » In addition to the neutrino oscillation measurement, we are measuring neutrino cross sections and this will have a big impact on oscillation precision in the future.
- » CC-inclusive cross section and CCQE cross section are measured with ND280 tracker.

$$\langle \sigma_{CC} \rangle_{\Phi} = (6.91 \pm 0.13(stat.) \pm 0.84(syst.)) \times 10^{-39} \frac{\text{cm}^2}{\text{nucleon}}$$

 $M_A^{QE} = 1.26^{+0.21}_{-0.18} \text{ GeV}$

» NC elastic cross section is measured with ND280 P0D.

 $\langle \sigma_{NCE} \rangle_{\Phi} = \left(2.24 \pm 0.07(stat.)^{+0.53}_{-0.63}(syst.) \right) \times 10^{-39} \frac{\text{cm}^2}{\text{nucleon}}$

- » The cross section results are compatible with the existing model predictions.
- » Flux uncertainty, dominant error source of cross section measurement, would be reduced with new CERN-NA61 hadron production measurement.
- » Many other exciting results to come.

Back up

Neutrino interaction around 1GeV

14^{×10⁻³⁹}

12

10

CC-inclusive cross section

SciBooNE result

- M_{Δ} has been measured to be 1.03GeV/c^2 in vD₂ and pion electroproduction.
- » A slew of low energy data (MiniBooNE, SciBooNE, K2K) prefers a higher axial mass and therefore higher σ .

Flux averaged CC-inclusive cross section measurement method

Differential cross section definition:

unfolding based on Bayes' theorem

$$U_{kj} = P(k|j) = \frac{P(j|k)P(k)}{\sum P(j|\alpha)}$$

 U_{kj} = probability to have an interaction in bin k, when having reconstructed the event in bin j

Systematic uncertainty

- » Systematic error sources.
 - Neutrino flux.
 - Neutrino interaction model and final state interaction.
 - Detector response.
- » ν_{μ} flux uncertainty is ~15%. → Dominant error source.
- Neutrino interaction model
 and FSI uncertainties come from
 comparison with external data. (MiniBooNE, SciBooNE etc.)
- » Detector uncertainty comes from uncertainties on the backgrounds in the selected sample and the uncertainties on reconstruction.

Systematic uncertainty of neutrino interaction model

- » Nominal value and uncertainty of axial vector mass or Fermi momentum come from external data
- » Normalization uncertainties comes from discrepancies between the neutrino interaction model and the external data.

Parameter changing the shape of 1π

channel below 1GeV.

	oncertainties of interaction		
	model parameters		
Energy dependent uncertainty for CC-	Parameters	Nominal value	Error
multi. π and CC deep inelastic (40%/E _v).	M_A^{CCQE}	$1.21 { m ~GeV}$	37.2~%
	\tilde{M}_A^{RES}	$1.16 \mathrm{GeV}$	9.5~%
Decay width of the resonance.	CC-oth shape	0	40~%
	p_F	$217 \ {\rm MeV/c}$	13.8~%
20% of all Λ may decay to produce be π	W_{shape}	87.7	51.7~%
20% of all Δ may decay to produce no π .	pionless Δ decay	0.2	20~%

Normalization uncertainties

Parameters	Energy range (GeV)	Error
CCQE	$0.0 < E_{\nu} < 1.5$	11~%
CCQE	$1.5 < E_{\nu} < 3.5$	30~%
CCQE	$3.5 < E_{\nu}$	30~%
$\text{CC-}1\pi$	$0.0 < E_{\nu} < 2.5$	43~%
$\text{CC-}1\pi$	$2.5 < E_{\nu}$	40~%
CC-COH	$0.0 < E_{\nu}$	100~%
NC-oth	$0.0 < E_{\nu}$	30~%
NC-1 π^0	$0.0 < E_{\nu}$	43~%

Uncertainties of interaction

Nominal value

 $\overline{\text{Off}}(0)$

Off(0)

Parameters

Spectral Function

 $1\pi E_{\nu}$ shape

Error

100 %

50 %

26

TPC particle identification

CCQE fitting

Reconstructed kinematics with fitted MC

Systematic errors for NC elastic analysis

Systematic Name	Error on cross section
Detector and Reconstruction	
Fiducial Volume	0.72%
PID Algorithm	1.12%
Reconstruction Road Following	1.66%
Michel Efficiency	0.98%
Number of targets	0.7%
Physics	
Cross section model parameters	+14.33%, -16.60%
Pion Absorption	2.29%
Secondary Interactions	2.5%
Outside background scaling factor	6.40%
Beam Flux	
Flux	+17.5%, -21.5%
Total Systematics	+23.88%, -28.22%
Total Statistical	$\pm 3.3\%$

CC-inclusive cross section with INGRID in bins of E_v

- » Neutrino energy spectrum on each INGRID module is different.
- » Categorize events by module group.
- » In addition, categorize events by topology group.
- » Fit the MC model to the numbers of events in the groups to extract CC-inclusive cross section in bins of E_{ν} .

