XXIV Workshop on Weak Interactions and Neutrinos # WIN 2013 Sep. 16 to 21, 2013 Natal, Brazil XXIV Workshop on Weak Interactions and Neutrinos - WIN'13 # Indirect Searches for NP in Flavour Physics. **Frederic Teubert CERN, PH Department** #### **Indirect Searches for NP** If the **energy** of the particle collisions is high enough, we can discover NP detecting the production of "real" new particles. If the **precision** of the measurements is high enough, we can discover NP due to the effect of "virtual" new particles in loops. But not all loops are equal... In "non-broken" gauge theories like QED or QCD the "decoupling theorem" (Phys. Rev. DII (1975) 2856) makes sure that the contributions of heavy (M>q²) new particles are not relevant. For instance, you don't need to know about the top quark or the Higgs mass to compute the value of α (M_Z²). However, in broken gauge theories, like the weak and yukawa interactions, radiative corrections are usually proportional to Δm^2 . #### **Indirect Searches for NP** Therefore, NP contributions are suppressed by the size of the isospin breaking value Δm^2 . Larger effects of NP expected in (t,b)/ τ -physics. Moreover, through the study of **the interference of different quantum paths** one can access not only to the magnitude of the couplings of NP, but also to their phase (for instance, by measuring CP asymmetries). Within the SM, only weak interactions through the Yukawa mechanism can produce a non-zero CP asymmetry. It is indeed a big mystery why there is no CP violation observed in strong interactions (axions?). Therefore, precision measurements of FCNC can reveal NP that may be well above the TeV scale, or can provide key information on the couplings and phases of these new particles if they are visible at the TeV scale. Direct and indirect searches are both needed and equally important, complementing each other. ### Status of Searches for NP So far, no significant signs for NP from direct searches at the LHC while a (the SM?) Scalar Boson has been found with a mass of ~ 126 GeV/c². Before LHC, expectations were that "naturally" the masses of the new particles would have to be light in order to reduce the "fine tuning" of the EW energy scale. Theory departments were (are?) full of advocates of supersymmetric particles appearing at the TeV energy scale. However, the absence of NP effects observed in flavour physics, even before LHC, implies → NP FLAVOUR PROBLEM > **Intensity Frontier** Workshop (Nov 2011, Washington) some level of "fine tuning" in the flavour sector #### "Non-natural" solution: → Minimal Flavour Violation (MFV). As we push the energy scale of NP higher, the NP FLAVOUR PROBLEM is reduced, hypothesis like MFV look less likely \rightarrow chances to see NP in flavour physics have, in fact, increased when Naturalness (in the SM Scalar sector) seems to be less plausible! N.Arkani-Hamed, #### FCNC in the SM $$U_{i} = \{u, c, t\}:$$ $$Q_{U} = +2/3$$ $$D_{j} = \{d, s, b\}:$$ $$\mathcal{L}_{CC} = \frac{g_{2}}{\sqrt{2}} (\bar{u}, \bar{c}, \bar{t}) \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \gamma^{\mu} P_{L} \begin{pmatrix} d \\ s \\ b \end{pmatrix} W_{\mu}^{+}$$ $$V_{\mu}^{+} = \{d, s, b\}:$$ $$Q_{D} = -1/3$$ $$\sim \text{Cabibbo-Kobayashi-Maskawa (CKM) matrix}$$ In the SM quarks are allowed to change flavour as a consequence of the Yukawa mechanism which is parameterized in a complex CKM couplings matrix. #### Using Wolfenstein parameterization: ## Loops zoology Map of Flavour transitions and type of loop processes: → Map of this talk! | | $b \rightarrow s (V_{tb}V_{ts} \alpha \lambda^2)$ | $b \rightarrow d (V_{tb}V_{td} \alpha \lambda^3)$ | $s \rightarrow d (V_{ts}V_{td} \alpha \lambda^5)$ | $c\rightarrow u (V_{cb}V_{ub} \alpha \lambda^5)$ | |---------------|--|---|---|--| | ΔF=2 box | $\Delta M_{Bs}, A_{CP}(B_s \rightarrow J/\Psi \Phi)$ | $\Delta M_B, A_{CP}(B \rightarrow J/\Psi K)$ | ΔM_K , ε_K | х,у, q/p, Ф | | QCD Penguin | $A_{CP}(B\rightarrow hhh), B\rightarrow X_s \gamma$ | $A_{CP}(B\rightarrow hhh), B\rightarrow X \gamma$ | $K \rightarrow \pi^0 II, \varepsilon'/\varepsilon$ | $\Delta a_{CP}(D \rightarrow hh)$ | | EW Penguin | $B \rightarrow K^{(*)}II, B \rightarrow X_s \gamma$ | $B \rightarrow \pi II, B \rightarrow X \gamma$ | $K \rightarrow \Pi^0 II, K^{\pm} \rightarrow \Pi^{\pm} \nu \nu$ | $D \rightarrow X_u II$ | | Higgs Penguin | $B_s \rightarrow \mu \mu$ | $B \rightarrow \mu \mu$ | $K \rightarrow \mu \mu$ | $D \rightarrow \mu \mu$ | ## Tree vs loop measurements (A, λ, ρ, η) are not predicted by the SM. They need to be measured! If we assume NP enters only (mainly) at loop level, it is interesting to compare the determination of the parameters (ρ, η) from processes dominated by tree diagrams $(V_{ub}, \gamma, ...)$ with the ones from loop diagrams $(\Delta M_d \& \Delta M_s, \beta, \epsilon_K, ...)$. Courtesy S. Descotes-Genon on behalf of CKMfitter coll. Need to improve the precision of the measurements at tree level to (dis-)prove the existence of NP contributions in loops. # Experimental Facilities # LHC is working like a dream! Since the first proton-proton collisions at the LHC at 7 TeV in Spring 2010, the progress has been fantastic! In 2012 LHC delivered routinely peak luminosities of 4×10^{33} /cm²/sec at 8 TeV, for a total of 23/fb to ATLAS&CMS (6/fb in 2011 at 7 TeV). LHCb took data at a constant luminosity 0.4x10³³/cm²/sec thanks to luminosity leveling, for a total of 2.2/fb at 8 TeV delivered (1.2/fb in 2011 at 7 TeV). LHCb average number of visible pp collisions per bunch crossing ~2, while for ATLAS/CMS is ~20. # LHC is working like a dream! The bb x-section was measured by LHCb at 7/8 TeV to be: 3×10^{11} fb (PLB 694 (2010) 209 and JHEP 06 (2013) 064). The cc x-section ~20 times higher! (Nuclear Physics B 871 (2013) 1) About 40% of the b-quarks produced at the LHC fragments into B^{\pm} and another 40% into B^{0} , while 10% fragments into B_{s} and 10% into baryons. However at the LHC, the two b-quarks are produced incoherently → extra dilution factor in the tagging of neutral mesons. The LHCb detector acceptance ranges between ~10% for $B_s \rightarrow \mu^+ \mu^-$ decays to, for instance, ~5% for $B_s \rightarrow J/\Psi[\mu^+ \mu^-] \Phi[K^+K^-]$. #### Rule of thumb: I/fb at 7TeV at LHCb is equivalent to (1k-5k)/fb at the e⁺e⁻ B-factories before tagging for B⁰/B[±] decays into charged particles. ...and the LHCb performance is up to it! $B_s \rightarrow D_s^- [K \cdot K^+ \pi^-] \pi^+$ Hadron trigger ~34k candidates/fb Proper time resolution ~ 44 fs (to be compared with $2\pi^{-1} \Delta m_s^{-1} \sim 350$ fs) Effective tagging ~3.5% New J. Phys. (2013) 053021 $\Delta m_s = 17.768 \pm 0.023 \pm 0.006 \text{ ps}^{-1}$ c.f. CDF with proper time resol. ~87 fs $\Delta m_s = 17.77\pm0.10\pm0.07 \text{ ps}^{-1}$. Precision measurements at hadron colliders are not any more a dream! #### (Parenthesis) Advantages / Disadvantages of Existing Facilities Common "past" knowledge: lepton colliders → precision measurements vs hadron colliders → discovery machines After the achievements at the Tevatron in precision EW measurements (W mass) and B-physics results (Δm_s) and in particular the astonishing initial performance of the LHC detectors (LHCb in particular), I think the above mantra is over simplistic and not true. **Lepton colliders** have the advantage of a known CoM energy, better selection efficiencies and high peak luminosities (10^{34} - 10^{36}) cm⁻²s. However, at the Y(4S) only $_{B(d,u)}$ mesons are produced. **Hadron colliders** have a very large cross-section ($\sigma_{bb}(LHC7)\sim3\times10^5\sigma_{bb}(Y(4S))$), very performing detectors and trigger system. Effective tagging efficiency is typically $\times10$ better at lepton colliders. 12 # V_{ub} phase: Experimental Strategies q=u: with D and anti-D in same final state $$B^{\pm}\rightarrow DX_s X_s = \{K^{\pm}, K^{\pm}m\pi, K^{*\pm},...\}$$ q=s: Time dependent CP analysis. Inteference between B_s mixing and decay. $$B_s \rightarrow D_s^{\pm} K^{\mp}$$ In the case q=u the experimental analysis is relatively simple, selecting and counting events to measure the ratios between B and anti-B decays. NP contributions to D mixing are assumed to be negligible or taken from other measurements. However the extraction of γ requires the knowledge of the ratio of amplitudes $(r_{B(D)})$ and the difference between the strong and weak phase in B and D decays $(\delta_{B(D)})$ \rightarrow charm factories input (CLEO/BESIII). In the case q=s, a time dependent CP analysis is needed to exploit the interference between B_s mixing and decay. NP contributions to the mixing needs to be taken from other measurements ($B_s \rightarrow J/\Psi \varphi$). # V_{III} phase: B[±] Decays $$< \underline{\Gamma(B^{\pm} \rightarrow [\pi\pi]_D K^{\pm}), \Gamma(B^{\pm} \rightarrow [KK]_D K^{\pm})} >$$ $$\Gamma(B^{\pm} \rightarrow [K\pi]_D K^{\pm})$$ favoured mod $R_{CP+} = 1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma$ $\Gamma(B^{\pm} \rightarrow [\pi K]_D K^{\pm})$ $\Gamma(\overline{B^{\pm}} \rightarrow \overline{[K\pi]_D K^{\pm})}$ ADS mode favoured mode #### average of KK and $\pi\pi$ modes $\Gamma(B^- \rightarrow D_{CP}K^-) - \Gamma(B^+ \rightarrow D_{CP}K^+)$ $\overline{\Gamma(B^- \to D_{CP}K^-) + \Gamma(B^+ \to D_{CP}K^+)}$ favoured mode $$A_{CP+} = \frac{2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma}$$ $$\frac{\Gamma(B^- \to D_{ADS}K^-) - \Gamma(B^+ \to D_{ADS}K^+)}{\Gamma(B^- \to D_{ADS}K^-) + \Gamma(B^+ \to D_{ADS}K^+)}$$ $B^{\pm} \rightarrow D[KK, \pi\pi]K^{\pm}$
with D decays in CP modes (Gronau, London, Wyler) PLB 253 (1991) 483 and PLB265 (1991) 172. $B^{\pm} \rightarrow D[K\pi]K^{\pm}$ (Atwood, Dunietz, Soni) PRL 78 (1997) 3257... $$R^{ADS} = \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma}{1 + (r_B r_D)^2 + 2r_B r_D \cos(\delta_B - \delta_D) \cos \gamma} \qquad A^{ADS} = \frac{2r_B r_D \sin(\delta_B + \delta_D) \sin \gamma}{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma}$$ Same argument works for D π final states, but $r_{\rm R}$ (hence interference) is ~10 smaller. A variation of the above methods, is when $D \rightarrow K_s h^+ h^{-1}$ (Giri, Grossman, Soffer and Zupan, PRD68, 054018 (2003)). A Dalitz analysis of the three-body decays allows for an increase in sensitivity. #### LHCb-CONF-2013-006 # **V**_{ub} phase: LHCb combination See S. Ricciardi talk for details $$\gamma = 67\pm12^{\circ} (r_B(DK)=0.092\pm0.008)$$ Excellent internal compatibility of GGSZ and GLW/ADS. LHCb ($\gamma = 67\pm12^{\circ}$) and B-factories ($\gamma = 66\pm12^{\circ}$) tree level measurements are in **good agreement** with the indirect determination from loop measurements ($\gamma = 66.6^{+6.4}_{-6.3}^{\circ}$). ### \triangle F=2 box in b \rightarrow d transitions: CP asymmetries in B, \rightarrow J/ \forall K, CKMFITTER (BABAR+Belle) combination: $$\beta = 21.38^{+0.79}_{-0.77}^{\circ}$$ PLB 721 (2013) 24 LHCb (1/fb): $\beta = 23.4^{+3.6}_{-3.2}^{\circ}$ $$\tan \beta \approx \frac{\eta}{1 - \rho} (1 - \frac{\lambda^2}{2})$$ $\tan \beta \approx \frac{\eta}{1-\rho} (1-\frac{\lambda^2}{2})$ To be compared with the indirect determination using "tree level measurements": $\beta = 24.9 + 0.8 - 1.9^{\circ}$ If we assume the SM, B-factories have measured the phase of V_{td} better than 4% from b d transitions in box diagrams. However, NP must be contributing at some level! Therefore, the precise measurement of β is in fact, a precise measurement of $(\beta + \phi_{bd}^{NP})$. ϕ_{bd}^{NP} can be as large as $O(5^{\circ})$ and still be consistent! #### \triangle F=2 box in b \rightarrow s transitions: CP asymmetries in B_s \rightarrow J/ $\Psi \oplus$ Sensitivity to the phase in the box diagram, through the interference between mixing and decay. Angular analysis is needed in $\mathbf{B}_s \rightarrow \mathbf{J}/\Psi \Phi$ decays, to disentangle statistically the CP-even and CP-odd components. Use the helicity frame to define the angles: $\theta_K, \theta_\mu, \phi_h$. # \triangle F=2 box in b \rightarrow s transitions LHCb flavour tagging improved with the inclusion now of Kaon Same Side Tag: ε D² = (3.13 ± 0.23)% # \triangle F=2 box in b \rightarrow s transitions The result of the LHCb angular analysis of $B_s \rightarrow J/\Psi \Phi$ decays with 1/fb (27.6k candidates) gives: $$\phi_s = 0.07 \pm 0.09 \text{ (stat)} \pm 0.01 \text{ (syst) rad,}$$ $\Gamma_s = 0.663 \pm 0.005 \text{ (stat)} \pm 0.006 \text{ (syst) ps}^{-1}$ $\Delta \Gamma_s = 0.100 \pm 0.016 \text{ (stat)} \pm 0.003 \text{ (syst) ps}^{-1}$ $|\lambda| = 0.94 \pm 0.03 \pm 0.02 \text{ (compatible w/ no CPV in decay)}$ See F. Dordei talk for more details. Moreover, the decays $B_s \rightarrow J/\Psi m \pi$ (PLB 713 (2012) 378) are in a pure CP-odd state and don't require angular analysis. A simultaneous fit to both decays gives: $$\Phi_s = 0.01 \pm 0.07 \text{ (stat)} \pm 0.01 \text{ (syst) rad}$$ $\Gamma_s = 0.661 \pm 0.004 \text{ (stat)} \pm 0.006 \text{ (syst) ps}^{-1}$ $\Delta \Gamma_s = 0.106 \pm 0.011 \text{ (stat)} \pm 0.007 \text{ (syst) ps}^{-1}$ # \triangle F=2 box in b \rightarrow s transitions $\Phi_s = 0.6 \pm 4.0^{\circ}$ can be compared with the indirect The LHCb measurement: determination using "tree measurements", $\Phi_s = -2.3^{+0.1}$. Although, there has been impressive progress since the initial measurements at CDF/D0, the uncertainty needs to be further reduced for a meaningful comparison. Meanwhile, other experiments have started contributing. ATLAS tagged analysis with 5/fb (22.6k candidates) and ($\varepsilon D^2 = (1.45 \pm 0.05)\%$) of $B \rightarrow J/\Psi \Phi$ decays gives: ATLAS-CONF-2013-039 $$\phi_s = 0.12 \pm 0.25 \text{ (stat.)} \pm 0.11 \text{ (syst.) rad}$$ $\Delta \Gamma_s = 0.053 \pm 0.021 \text{ (stat.)} \pm 0.009 \text{ (syst.) ps}^{-1}$ $\Gamma_s = 0.677 \pm 0.007 \text{ (stat.)} \pm 0.003 \text{ (syst.) ps}^{-1}$ which corresponds to $\Phi_s = 7 \pm 16^\circ$. CMS has also perform an untagged analysis with 5/fb (14.5k candidates) to measure: CMS-PAS-BPH-11-006 $$\Delta \Gamma_s = 0.048 \pm 0.024 \text{ (stat)} \pm 0.003 \text{ (syst) ps}^{-1}$$ ## \triangle F=2 box in b \rightarrow q transitions $$\left\langle B_{q}^{0} \left| M_{12}^{SM+NP} \left| \overline{B}_{q}^{0} \right\rangle \right\rangle \equiv \Delta_{q}^{NP} \cdot \left\langle B_{q}^{0} \left| M_{12}^{SM} \left| \overline{B}_{q}^{0} \right\rangle \right\rangle$$ $$\Delta_q^{NP} = \text{Re}(\Delta_q) + i \ Im(\Delta_q) = |\Delta_q| e^{i\phi^{\Delta_q}}$$ See D. Derkach talk for the UTfit point of view. No significant evidence of NP in B_d or B_s mixing. Remember that what is named SM prediction in these plots, is in fact the determination from other measurements (tree level). New CP phases in box diagrams constrained @95%CL to be <12% (<20%) for B_d(B_s). Need to increase precision to disentangle NP phases of few percent in B_d and B_s mixing #### \triangle F=I in c \rightarrow u QCD penguins: "Direct" CP violation in Charm decays No evidence yet of CP violation in the interference between mixing and decay in the Charm system. Could we have large (unexpected) "direct" CP violation in Charm (penguin) decays? A priori, consensus was CP violation O(1%) would be "clear" sign for NP. Within the SM, use of U-spin and QCD factorization leads to ΔA_{CP} ~4 Penguin/Tree ~0.04%. $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$ cancels detector and production asymmetries to first order. The SM and most NP models predicts opposite sign for KK and $\pi\pi$, hence no sensitivity lost by taking the subtraction. $D^{*\pm} \rightarrow D^0$ [h⁺h⁻] π^{\pm} charge of the pion determines the flavour of D^0 . Most of the systematics cancel in the subtraction, and are controlled by swapping the LHCb magnetic field. There is no problem to enhance ΔA_{CP} in NP models, the question is really if subleading SM contributions are well under control. For instance, the U-spin approximation is challenged by the measurement $B(D \rightarrow \pi\pi) \sim 2.8 \ B(D \rightarrow KK)$. \triangle F=I in c \rightarrow u QCD penguins: Direct CP violation in Charm decays LHCb first evidence for direct CP violation in charm decays with 0.6/fb: $$\Delta A_{CP} = (-0.82 \pm 0.24)\%$$ LHCb (0.6/fb) (PRL 108, 111602 (2012)) confirmed later by: $$\Delta A_{CP} = (-0.62 \pm 0.23)\%$$ CDF (PRL 109, 111801 (2012)) $$\Delta A_{CP} = (-0.87 \pm 0.41)\%$$ BELLE (Preliminary ICHEP 2012) However, a more precise LHCb update with I/fb does not confirm the previous tendency: See M. Smith talk for details $$\Delta A_{CP} = (-0.34 \pm 0.18)\% LHCb (1/fb) (LHCb-CONF-2013-003)$$ Moreover, an independent analysis using $B^{\pm} \rightarrow D^0$ [h⁺h⁻] $\mu^{\pm} \nu X$, where the charge of the muon determines the flavour of D^0 , does not confirm either the initial hints: $$\Delta A_{CP} = (0.49 \pm 0.33)\%$$ LHCb (semil, I/fb) (PLB 723, (2013) 33) #### \triangle F=1 in c \rightarrow u QCD penguins: "Direct" CP violation in Charm decays Naïve average $\triangle A_{CP} = (-0.35 \pm 0.12)\%$ p-value average = 2.4% (or equivalent to 2.3σ) p-value (no CP-violation) = 0.15% (or equivalent to 3.2σ) LHCb results dominated by statistics. Situation should become more clear with the analysis of the available 3/fb. But it is clear that we are moving towards smaller effects, hence difficult to differentiate NP from SM. ### Three impersonations of the EW penguin MSSM $lpha_{\,\mathrm{QED}}$ suppression helicity suppression **B**_s→**φ**γ $$\mathcal{O}_{7\gamma} \sim m_b \bar{s}_L \sigma_{\mu\nu} b_R F^{\mu\nu}$$ **Relevant Operators** $B^0 \rightarrow K^* \mu^+ \mu^-$ $$\mathcal{O}_{7\gamma} \sim m_b \bar{s}_L \sigma_{\mu\nu} b_R F^{\mu\nu} \\ \mathcal{O}_{9\ell(10\ell)} \sim \bar{s}_L \gamma_\mu b_L \bar{\ell} \gamma^\mu (\gamma_5) \ell$$ Large theory uncertainties O(20%) BR(SM) $(3.5\pm0.4)\cdot10^{-5}$ LHCb: arXiv:1209.0313 BR exp (1.16±0.19)·10⁻⁶ LHCb: arXiv: 1205.3422 distributions $$\mathbf{B_s} \longrightarrow \boldsymbol{\mu^+\mu^-} \qquad \mathcal{O}_{S(P)} \sim \bar{s}_L b_R \bar{\ell}(\gamma_5) \ell$$ $(3.6\pm0.5)\cdot10^{-9}$ helicity suppressed BR γ polarization angular #### \triangle F=1EW penguins in b \rightarrow s transitions: B \rightarrow K* μ μ angular analysis $$b \rightarrow s (|V_{tb}V_{ts}| \alpha \lambda^2)$$ $B \rightarrow K^* \mu \mu$ is the golden mode to test new vector(-axial) couplings in $b \rightarrow s$ transitions. $K^* \rightarrow K\pi$ is self tagged, hence angular analysis ideal to test helicity structure. Sensitivity to O_7 , O_9 and O_{10} and their primed counterparts. This analysis is bound to be **one of the stronger constraints** in models for NP with future statistics. $$\frac{1}{\Gamma} \frac{\mathrm{d}^{3}(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_{\ell} \,\mathrm{d}\cos\theta_{K} \,\mathrm{d}\phi} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_{L}) \sin^{2}\theta_{K} + F_{L} \cos^{2}\theta_{K} + \frac{1}{4} (1 - F_{L}) \sin^{2}\theta_{K} \cos 2\theta_{\ell} \right.$$ $$\left. - F_{L} \cos^{2}\theta_{K} \cos 2\theta_{\ell} + S_{4} \sin 2\theta_{K} \sin 2\theta_{\ell} \cos \phi + S_{5} \sin 2\theta_{K} \sin 2\theta_{\ell} \cos \phi + S_{5} \sin 2\theta_{K} \sin \theta_{\ell} \cos \phi + S_{6} \sin^{2}\theta_{K} \cos \theta_{\ell} + S_{7} \sin 2\theta_{K} \sin \theta_{\ell} \sin \phi + S_{9} \sin^{2}\theta_{K} \sin^{2}\theta_{\ell} \sin 2\phi \right]$$ Results from
B-factories and CDF very much limited by the statistical uncertainty. **LHCb** already has with I/fb the largest sample (0.9k candidates). #### \triangle F=1EW penguins in b \rightarrow s transitions: B \rightarrow K* μ μ angular analysis Hadronic uncertainties under reasonable control for: - F₁: Fraction of K* longitudinal polarization. - S₆=-4/3A_{FB}: Forward-Backward asymmetry of the lepton. - $S_3 \alpha A^2_T (I-F_L)$: Asymmetry in K* transverse polarization. A_{FB} zero crossing point particularly well predicted within the SM. Moreover, the dependence with form factors can be further reduced with a redefinition of observables: $$A_{ m T}^{(2)} = rac{2S_3}{(1-F_L)}$$ $A_{ m T}^{Re} = rac{S_6}{(1-F_L)}$ $rac{1}{\Gamma} \, ar{\epsilon} a$ $$\frac{1}{\Gamma} \frac{\mathrm{d}^{3}(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_{\ell}\,\mathrm{d}\cos\theta_{K}\,\mathrm{d}\phi} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_{\mathrm{L}})\sin^{2}\theta_{K} + F_{\mathrm{L}}\cos^{2}\theta_{K} + \frac{1}{4} (1 - F_{\mathrm{L}})\sin^{2}\theta_{K}\cos2\theta_{\ell} \right.$$ $$\left. - F_{\mathrm{L}}\cos^{2}\theta_{K}\cos2\theta_{\ell} + \frac{1}{2} (1 - F_{\mathrm{L}})A_{\mathrm{T}}^{(2)}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\cos2\phi + \frac{1}{2} (1 - F_{\mathrm{L}})P_{4}'\sin2\theta_{K}\sin2\theta_{\ell}\cos\phi + \sqrt{F_{\mathrm{L}}(1 - F_{\mathrm{L}})P_{5}'}\sin2\theta_{K}\sin\theta_{\ell}\cos\phi + \frac{1}{2} (1 - F_{\mathrm{L}})P_{4}'\sin2\theta_{K}\sin2\theta_{\ell}\cos\phi + \sqrt{F_{\mathrm{L}}(1 - F_{\mathrm{L}})P_{5}'}\sin2\theta_{K}\sin\theta_{\ell}\cos\phi + \frac{1}{2} (1 - F_{\mathrm{L}})A_{Re}^{\mathrm{T}}\sin^{2}\theta_{K}\cos\theta_{\ell} + \sqrt{F_{\mathrm{L}}(1 - F_{\mathrm{L}})P_{5}'}\sin2\theta_{K}\sin\theta_{\ell}\cos\phi + \frac{1}{2} (1 - F_{\mathrm{L}})A_{Re}^{\mathrm{T}}\sin^{2}\theta_{K}\cos\theta_{\ell} + \sqrt{F_{\mathrm{L}}(1 - F_{\mathrm{L}})P_{5}'}\sin2\theta_{K}\sin\theta_{\ell}\sin\phi + \frac{1}{2} (1 - F_{\mathrm{L}})P_{5}'\sin2\theta_{K}\sin\theta_{\ell}\sin\phi + \frac{1}{2} (1 - F_{\mathrm{L}})P_{5}'\sin2\theta_{K}\sin\theta_{\ell}\sin\phi + \frac{1}{2} (1 - F_{\mathrm{L}})P_{5}'\sin2\theta_{K}\sin\theta_{\ell}\sin\phi + \frac{1}{2} (1 - F_{\mathrm{L}})P_{5}'\sin2\theta_{K}\sin\theta_{\ell}\cos\phi F_{\mathrm{L}})P_{5}'\sin\theta_{\ell}\cos\phi \frac{$$ #### $B \rightarrow K^* \mu \mu$ Angular Analysis Results Folding technique $(\Phi \to \Phi + \pi)$ for $\Phi < 0$, reduces the number of parameters to fit: F_L , S_3 , S_6 and S_9 . Within uncertainties observables are consistent with the SM. ## ATLAS, CMS B \rightarrow K* μ μ angular analysis And fortunately also ATLAS and CMS with \sim 0.4k candidates in 5/fb start to contribute to this analysis. They are particularly competitive at large q². 34 #### $B \rightarrow K^* \mu \mu Angular Analysis Results$ Other folding techniques, can give access to the rest of observables. $$P_4', S_4: \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \phi \to \pi - \phi & \text{for } \theta_\ell > \pi/2 \\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2, \end{cases}$$ $$P_5', S_5: \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2, \end{cases}$$ $$P_6', S_7: \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2, \end{cases}$$ $$P_8', S_8: \begin{cases} \phi \to -\phi & \text{for } \phi > \pi/2 \\ \phi \to -\pi - \phi & \text{for } \phi < -\pi/2 \\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2, \end{cases}$$ $$P_8', S_8: \begin{cases} \phi \to \pi - \phi & \text{for } \phi > \pi/2 \\ \phi \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2, \end{cases}$$ $$P_8', S_8: \begin{cases} \phi \to \pi - \phi & \text{for } \phi > \pi/2 \\ \phi \to \pi - \phi & \text{for } \phi < -\pi/2 \\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2, \end{cases}$$ Most of measurements in good agreement with SM predictions. Only a hint of disagreement in P_5 at low q^2 . With more luminosity a full angular analysis (no folding) will allow to exploit the full statistical power of the data. See J. Hernando talk for more details. #### \triangle F=IEW penguins in b \rightarrow s transitions: Implications FIG. 4: Improvement in the q^2 -dependence of P'_5 in the illustrative case $C_9^{NP} - C_{9'}^{NP} = -1.5$ (and NP contributions to the other Wilson coefficients set to zero). $$O_{7} = \frac{m_{b}}{e} (\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu}, \qquad O_{8} = \frac{gm_{b}}{e^{2}} (\bar{s}\sigma_{\mu\nu}T^{a}P_{R}b)G^{\mu\nu\,a},$$ $$O_{9} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell), \qquad O_{10} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell),$$ $$O_{S} = m_{b}(\bar{s}P_{R}b)(\bar{\ell}\ell), \qquad O_{P} = m_{b}(\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell),$$ 36 SM predictions for P'₅ differ significantly between different authors. Nevertheless, NP contributing to C₉ could provide a better fit to the data, and still be compatible with other measurements. The increase in sensitivity of the analysis with 3/fb could already be tale-telling. ## \triangle F=1 Higgs penguins in b \rightarrow d,s transitions: B decays The pure leptonic decays of **K,D** and **B** mesons are a particular interesting case of EW penguin. The **helicity** suppression of the vector(-axial) terms, makes these decays particularly sensitive to new (pseudo-)scalar interactions → Higgs penguins! These decays are well predicted theoretically, and experimentally are exceptionally clean. Within the SM, arXiv:1208.0934 arXiv:1303.3820 PRL 109, 041801 (2012) with input from HFAG. $$BR_{SM}(B_s \rightarrow \mu \mu) < t > = (3.56 \pm 0.29) \times 10^{-9}$$ $$BR_{SM}(B \rightarrow \mu \mu) < t > = (1.07 \pm 0.10) \times 10^{-10}$$ $$BR(B_q \to \mu^+ \mu^-) = \frac{G_F^2 \alpha^2}{64\pi^3 \sin^4 \theta_W} |V_{tb}^* V_{tq}|^2 \tau_{Bq} M_{Bq}^3 f_{Bq}^2 \sqrt{1 - \frac{4m_\mu^2}{M_{Bq}^2}} \times$$ $$\times \left\{ M_{Bq}^{2} \left(1 - \frac{4m_{\mu}^{2}}{M_{Bq}^{2}} \right) \left(\frac{C_{S} - \mu_{q}C_{S}^{'}}{1 + \mu_{q}} \right)^{2} + \left[M_{Bq} \left(\frac{C_{P} - \mu_{q}C_{P}^{'}}{1 + \mu_{q}} \right) + \frac{2m_{\mu}}{M_{Bq}} C_{A} - C_{A}^{'} \right) \right]^{2} \right\}$$ with $\mu_q = m_q/m_b << 1$ and $m_\mu/m_B << 1$. Hence if $C_{S,P}$ are of the same order of magnitude than C_A they dominate by far. Superb test for new (pseudo-)scalar contributions. Within the MSSM this BR is proportional to $tan^6 \beta / M_A^4$ ## \triangle F=1 Higgs penguins in b \rightarrow d,s transitions: B decays Main difficulty of the analysis is large ratio B/S. Assuming the SM BR then after the trigger and selection, CDF expects ~0.26 B_s $\rightarrow \mu \mu$ signal events/fb, ATLAS ~0.4, CMS ~0.8 while LHCb ~12 (6 with BDT>0.5). The background is estimated from the mass sidebands. **LHCb** is also using the signal pdf shape from control channels, rather than just a counting experiment. All experiments normalize to a known B decay. In the B_s mass window the background is completely dominated by combinations of real muons (main handle is the invariant mass resolution: a factor two better invariant mass resolution is equivalent to a factor two increase in luminosity). | | ATLAS | CMS | CDF | LHCb | |--|-----------------------|-----------|-----------------------|-----------------------| | Decay time resolution (B _s) | ~100 fs | ~70 fs | 87 fs | 45 fs | | Invariant Mass
resolution
(2-body) | 80 MeV/c ² | 45 MeV/c² | 25 MeV/c ² | 22 MeV/c ² | Therefore, for equal analyses strategies: ~1/fb at LHCb is equivalent to ~10/fb at CMS, ~20/fb at ATLAS/CDF. ### \triangle F=1 Higgs penguins in b \rightarrow d,s transitions:ATLAS/CDF/D0 Results **CDF** analysis strategy very similar than LHCb. Small excess observed over the background-only hypothesis in the B_s mass window (p-value = 0.9%). **CDF**: 10 fb⁻¹ [PRD 87, 072003 (2013)] **D0** however sees no excess (p-value = 77%). $\mathcal{B}(\mathcal{B}_{s}^{0} \to \mu^{+}\mu^{-}) \in [0.8, 34] \cdot 10^{-9}$ $\mathcal{B}(\mathcal{B}^{0} \to \mu^{+}\mu^{-}) < 4.6 \cdot 10^{-9}$ @ 95 % C.L. **D0:** 10.4 fb^{-1} [arXiv:1301.4507] $${\cal B}(B_s^0 o \mu^+ \mu^-) <$$ 15 \cdot 10⁻⁹ @ 95 % C.L. **ATLAS** (like D0) cannot distinguish B_s from B_d and does not observe any excess w.r.t. background-only hypothesis (p-value = 58%). $$\mathcal{B}(\textit{B}_{\textrm{s}}^{\textrm{0}} \rightarrow \mu^{+}\mu^{-}) < 15 \cdot 10^{-9}$$ @ 95 % C.L. ## \triangle F=1 Higgs penguins in b \rightarrow d,s transitions: CMS/LHCb Results **CMS** (25 fb⁻¹) and **LHCb** (3 fb⁻¹) have sensitivity to BR(B_s $\rightarrow \mu^+ \mu^-$) =3×10⁻⁹, with 4.8 σ (CMS) and 5.0 σ (LHCb) expected excess w.r.t. background-only hypothesis in the B_s mass window. Observed: $$BR(B_s \to \mu^+ \mu^-) = (2.9^{+1.1}_{-1.0}) \times 10^{-9}$$ $$BR(B_s \to \mu^+ \mu^-) = (3.0^{+1.0}_{-0.9}) \times 10^{-9}$$ ## \triangle F=1 Higgs penguins in b \rightarrow d,s transitions: Results #### Observation: BR($$B_s \to \mu^+ \mu^-$$) = (2.9 ± 0.7) × 10⁻⁹ BR($$B^0 \to \mu^+ \mu^-$$) = 3.6 $^{+1.6}_{-1.4} \times 10^{-10}$ for more details. ## \triangle F=I Higgs penguins in b \rightarrow s,d transitions: Implications Latest results on $B_{(s)} \rightarrow \mu^+ \mu^-$ strongly constraint the parameter space for many NP models, complementing direct searches from ATLAS/CMS. In particular, large $\tan \beta$ with light pseudoscalar Higgs in CMSSM is strongly disfavored. The precision achieved now is such that $B_{(s)} \rightarrow \mu^+ \mu^-$ sensitivity to (Z, γ) penguin starts to compete with the golden mode $B \rightarrow K^* \mu^+ \mu^-$. # **Charged Lepton** Flavour Violation ## **CLFV: Muon Decays** The discovery of neutrino
oscillations implies CLFV at some level. Many extensions of the SM to explain neutrino masses, introduce large CLFV effects (depends on the nature of neutrinos, Dirac vs Majorana). Hence, CLFV is very relevant for "Flavour" and "Neutrino" physics! There is one more very important advantage w.r.t. the quark sector: the reach for NP energy scale is not so much affected by QCD uncertainties in the SM predictions. The **MEG** collaboration at PSI using stopped muons have achieved an amazing sensitivity to $\mu \rightarrow e \gamma$. ## **CLFV: Tau Decays** Tau Decays are less suppressed in the SM with Dirac massive $\, u \, . \,$ The ratio between $\tau \rightarrow \mu \gamma$ and $\tau \rightarrow \mu \mu \mu$ is a very powerful test of NP models. The decay in 3 μ is interesting in models with no dipole dominance (e.g. scalar currents). Typically SUSY predictions in the range [10-11-10-9]. Taus are harder to produce. While rates of $3x10^7 \mu^+/\text{sec}$ have been achieved at PSI, the B-factories have produced the best limits on CLFV tau decays with production rates of $\sim 2\times10^9 \tau/\text{ab}^{-1}$ or $\sim 10^2 \tau/\text{sec}$. However, at the LHC taus are copiously produced (mainly from charm decays, $D_s \rightarrow \tau \nu$). At 7 TeV pp collisions, ~8x10¹⁰ τ /fb⁻¹ are produced or ~10⁵ τ /sec. At 14 TeV pp collisions expect to double the rate (higher xsection) and double again (luminosity)!. Best limits at 90% C.L., so far, from B-factories: BELLE: BR($\tau \to \mu \gamma$) BR($\tau \to \mu \mu \mu$) arXiv:1001.3221, arXiv:1002.4550 BABAR: 4.4×10^{-8} 3.3×10^{-8} Is it possible to exploit this large sample of taus at the LHC? ## Tau Flavour Violation Decays at LHCb: $\tau \rightarrow \mu \mu \mu$ LHCb has performed for the first time at hadron colliders a search for $\tau \to \mu \mu \mu$ in I/fb at $\sqrt{s}=7$ TeV. The number of candidates is normalized to the number of $D_s \to \varphi[\mu \mu]\pi$, the measured bb and cc cross-section at LHCb, and the fractions of $B \to \tau$ and $D \to \tau$ from LEP/B-factories. Search in bins of invariant mass, PID and topological discriminant. Distribution compatible with background hypothesis. Main background in the sensitive bins $(D_s^+ \rightarrow \eta [\mu \mu \gamma] \mu \nu)$. LHCb results: BR($\tau \rightarrow \mu \mu \mu$)<9.8(8.0)×10⁻⁸ at 95(90)% CL. BELLE sensitivity x4 better with $\sim 0.8 \text{ ab}^{-1}$. The **LHCb-upgrade** with 50 fb⁻¹ at $\sqrt{s} \sim 14$ TeV and **BELLE-II** with 50 ab⁻¹ should reach **BR**($\tau \rightarrow \mu \mu \mu \mu$)<[10⁻¹⁰-10⁻⁹] at 90% CL. See O.Vives talk for more on the future. # Conclusions perspectives talk Interest in precision flavour measurements is stronger than ever. In some sense it would have been very "unnatural" to find NP at LHC7 from direct searches with the SM CKM structure. There are few interesting anomalies, but in general the agreement with the SM is excellent \rightarrow large NP contributions, O(SM), ruled out in many cases. There is a priory as many good reasons to find NP by measuring precisely the couplings of the new scalar, as by precision measurements in the flavour and neutrino sectors! The search has just started at LHCb with (1+2)/fb at LHC(7+8)TeV. LHCb upgrade plans to collect ~50/fb with a factor ~2 increase in bb and cc cross-section. ATLAS/CMS plan to collect ~300/fb and Belle-II plans to collect ~50/ab before HL-LHC. See G. Branco We don't know yet what is the scale of NP→ cast a wide net! # Don't give up yet! #### Tracking performance: Momentum and impact parameter resolution | | ATLAS Si
Pixel | CMS Si
Pixel | LHCb Si
VELO | |------------------|----------------------|-----------------------|------------------| | N channels | 80 M | 66 M | 170 k | | Size | 50x400
μm (pixel) | 100x150
μm (pixel) | 40 μm
(strip) | | Distance to beam | 8.8 cm | 4.4 cm | 0.8 cm | Integral Bdl: CMS/LHCb ~ 4 Tm, ATLAS ~2.5 Tm | | ATLAS | CMS | CDF | LHCb | |--|-----------------------|-----------------------|-----------------------|-----------------------| | Decay time resolution (B _s) | ~100 fs | ~70 fs | 87 fs | 45 fs | | Invariant Mass
resolution
(2-body) | 80 MeV/c ² | 45 MeV/c ² | 25 MeV/c ² | 22 MeV/c ² | ## **LHCb Particle Identification** Efficiencies computed from data: pure samples of kinematically selected $K_s \rightarrow \pi^+\pi^-$, $\Lambda^0 \rightarrow p\pi^-$, $D^0 \rightarrow K^+\pi^-$ ## **LHCb Particle Identification** # Trigger systems at LHC # **LHCb Trigger System** LHCb trigger output rate completely saturated by bb/cc events. However, only interested in relatively rare events (BR<10-3) → the LHCb trigger is what is called b-tagging at ATLAS/CMS! For bb an inclusive approach just works fine, but need exclusive selections for cc. One synchronous **hardware** level, DAQ rate limited to **I MHz**. Computing farm with software HLT. - First rate reduction based on track reconstruction (~80 kHz). - Final inclusive/exclusive algorithms reconstruct B/D candidates (~5 kHz). # b-)u,c: Charged Currents (NP at tree level?) Measured values of V_{ub} at B-factories using inclusive or exclusive methods show a discrepancy at the 2-3 σ level: V_{ub} (incl.)~I.3 V_{ub} (excl.). Both methods suffer from large theoretical and experimental uncertainties. Next generation B-factories will produce hadronic tagged, high statistics, high purity samples. LHCb is expected to provide competitive results in exclusive modes. Progress with lattice calculations but still a big challenge for theory! ## b -> u: Charged Currents (NP at tree level?) For some time the measured BR(B $\rightarrow \tau \nu$) has been about a factor two higher than the CKM fitted value (3 σ), in better agreement with the inclusive V_{ub} result. Measurement very challenging at hadron colliders. On the other hand, we knew from LEP: $W \rightarrow \tau \nu / W \rightarrow l \nu \sim 1.06 \pm 0.03$ B_{tag} reconstructed from - hadronic decays B→D^(*)π, etc., - semileptonic decays B→D^(*)|v. Bsig extracted by using - extra energy ("E_{ECL}" or "E_{extra}"), - missing mass squared ("M_{miss}²"). Summer 2012 **Belle** presented a more precise hadron tag analysis, in better agreement with the fitted CKM value: World average BR(B $\rightarrow \tau \nu$))_{exp}= (1.15±0.23)x10⁻⁴ vs CKM fit:(0.83±0.09)x10⁻⁴ ## b > c: Charged Currents (NP at tree level?) **BABAR** also presented by Summer 2012 a more precise measurement of $BR(B \rightarrow D(*) \times \nu)/BR(B \rightarrow D(*) \times \nu)$. Ratio cancels V_{cb} and QCD uncertainties. Combined D and D* BABAR results are 3.4 σ higher than SM Belle should be able to reduce the uncertainties on $B \rightarrow D(*) \tau \nu$ soon at similar level than BABAR. Not obvious NP explanation. 2HDM need to be stretched to be able to explain the measured ratio at BABAR, and in any case would be in tension with the latest measurements of BR(B $\rightarrow \tau \ \nu$). # \triangle F=2 box transitions theory $$i rac{d}{dt}\left(egin{array}{c} |B_q(t) angle\ |ar{B}_q(t) angle \end{array} ight) = \left(\hat{M}^q - rac{i}{2}\hat{\Gamma}^q ight) \left(egin{array}{c} |B_q(t) angle\ |ar{B}_q(t) angle \end{array} ight)$$ In principle one expects NP to affect the dispersive part, i.e. new heavy particles $(M>q^2)$ contributing virtually to the box diagram. The absorptive part is dominated by the production of real light particles $(M<q^2)$. ## Dispersive part: M₁₂ $$\Delta m_s = 2|M_{12}| \propto B_s f_s^2 |V_{ts}|^2 |V_{tb}|^2$$ arg $$M_{12}$$ = arg $(V_{ts}^* V_{tb}^*)^2 + \pi = \varphi_s + \pi$ ## Absorptive part: Γ_{12} $$\Delta \Gamma = 2 |\Gamma_{12}|$$ $\frac{\Delta \Gamma}{\Delta m} = \frac{3\pi m_b^2}{2m_W^2 S(x_t)} \approx 5 \times 10^{-3}$ $$\Delta \Gamma_{\rm d} \propto 0.004 \times \Gamma_{\rm d}$$ $\Delta \Gamma_{\rm s} \propto 0.1 \times \Gamma_{\rm s}$ # \triangle F=2 box transitions theory The oscillation frequency is given by $\Delta M_q \sim 2|M_{12}|$. The width difference by $\Delta \Gamma_q \sim 2|\Gamma_{12}|\cos(\phi_q)$ with $\phi_q = \arg(-M_{12}/\Gamma_{12})$. Expect very small CP violation in the oscillation, or equivalently very small values for flavour-specific CP asymmetries: $$a^q_{fs} = | \Gamma^q_{12} / M^q_{12} | sin(\phi_q)$$ Best chance to see SM-level CP asymmetries in the interference between mixing and decay. # \triangle F=2 box in b \rightarrow s transitions However, there is a two fold ambiguity in the differential decay rates: $$(\phi_{\mathtt{s}}, \Delta\Gamma_{\mathtt{s}}, \delta_{\mathtt{0}}, \delta_{\parallel}, \delta_{\perp}, \delta_{\mathtt{S}}) \longmapsto (\pi - \phi_{\mathtt{s}}, -\Delta\Gamma_{\mathtt{s}}, -\delta_{\mathtt{0}}, -\delta_{\parallel}, \pi - \delta_{\perp}, -\delta_{\mathtt{S}})$$ This ambiguity is resolved by LHCb using the dependence of the phase difference between P-wave and S-wave. The physical solution is found to be the blue points (the other solution, red points, is not compatible), therefore: ## \triangle F=2 box in b \rightarrow q transitions (D0 flavour specific asymmetries) Could it be that we have large NP effects in the absorptive part? $$\mathbf{a}^{q}_{fs} = | \Gamma^{q}_{12} / \mathbf{M}^{q}_{12} | \sin(\varphi_{q})$$ $$B_{q}^{0} \rightarrow D_{q}^{-}\mu^{+}\nu_{\mu}: \text{ Allowed } \\ B_{s}^{0} \downarrow_{q}^{\overline{b}} \longrightarrow D_{s}^{\overline{c}} D_{$$ D0 inclusive measurement of the dimuon asymmetry is interpreted as a linear combination of a_{SI} (B_d) and a_{SI} (B_s) which depends on the fraction of B_d and B_s in the data sample. **No** production asymmetry at pp colliders. Detector asymmetry controlled by switching magnet polarity. D0 Dimuon: $$A_{SL}^b = (-0.787 \pm 0.172(stat) \pm 0.093(syst))\%$$ (3.9 σ) PRD 84 (2011) 052007 Systematic uncertainty drastically reduced by assuming the bkg from the single-muon asymmetry.
and splitting the data sample in low(high) IP: $$a_{SL}(B_d) = (-0.12\pm0.52)\%$$, $a_{SL}(B_s) = (-1.81\pm1.06)\%$ Moreover, D0 has also measured: PRD 86 (2012) 072009, PRL 110 (2013) 011801 Using $$B_d \rightarrow \mu^+ D^{(*)-}$$: $a_{SL}(B_d) = (0.68 \pm 0.45 (stat) \pm 0.14 (syst))\%$ Using $B_s \rightarrow \mu^+ D_s^-$: $a_{SL}(B_s) = (-1.12 \pm 0.74 (stat) \pm 0.17 (syst))\%$ ## \triangle F=2 box in b \rightarrow q transitions (LHCb flavour specific asymmetries) من 0.02 من الم LHCb cannot really follow the same inclusive approach due to the relatively large production asymmetry (for B_s roughly ~1%). **LHCb** arXiv:1308.1048 LHCb (B, \rightarrow D,[$\Phi\pi$] $\mu \nu$ X): $a_{SL}(B_s) = (-0.06\pm0.50(stat) \pm 0.36(syst))\%$ Also taking into account the measurement at the B-factories of $a_{SL}(B_d) = (0.02\pm0.31)\%$ -0.02 LHCb World naïve average: **D**0 $a_{SL}(B_d) = (0.13 \pm 0.21)\%$, $a_{s1}(B_s) = (-0.71 \pm 0.44)\%$ Y(4S) HFAG -0.04D0 The world averaged values are in -0.020.02 -0.04 reasonable agreement with the SM. LHCb needs to add more channels and more data and a precise measurement of $A_{SL}(B_d)$ to be able to conclude. However there is already a clear tension between D0 $a_{SL}(B_s)$ and the measurements of $(\Delta \Gamma_s, \Phi_s)$ ## \triangle F=2 box in b \rightarrow q transitions: (NP in absorptive part) LHCb needs to add more channels and more data and a precise measurement of $A_{SI}(B_d)$ to be able to conclude. However there is already a clear tension between D0 $a_{SL}(B_s)$ and the measurements of $(\Delta \Gamma_s, \Phi_s)$. Getting more difficult to get a coherent picture. ## \triangle F=2 box in c \rightarrow u transitions: NP in charm mixing? $$x = \frac{\Delta M}{\Gamma} = \frac{M_H - M_L}{(\Gamma_H + \Gamma_L)/2}, \qquad y = \frac{\Delta \Gamma}{2\Gamma} = \frac{\Gamma_H - \Gamma_L}{(\Gamma_H + \Gamma_L)}$$ In Charm mixing absorptive part dominant, therefore large theoretical uncertainties in the SM prediction. Charm mixing has been confirmed combining BaBar, Belle and CDF. However, no observation (>5 σ) by a single experiment until 2013! $$\begin{array}{c} \text{D}^{*+} \rightarrow \text{D}^0 \ \pi^+ \\ \text{D}^0 \\ \text{DCS} \\ \text{right-sign events} \\ \text{CF} \\ \end{array} \\ R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} = R_D + \sqrt{R_D y' t} + \frac{x'^2 + y'^2}{4} t^2 \\ x' = x \cos \delta + y \sin \delta \\ x' = x \cos \delta + y \sin \delta \\ y' = y \cos \delta - x \sin \delta \\ \end{array}$$ ## \triangle F=2 box in c \rightarrow u transitions: NP in charm mixing? LHCb strategy similar than CDF: use ratio of WS to RS events as a function of t in $D^* \rightarrow D\pi$ events. Charge of soft pion tags the D^0 flavour. No mixing hypothesis excluded at 9.1 σ by LHCb. Recent CDF update (at Beauty, April 2013) using same experimental strategy, excludes nomixing hypothesis at 6.1 σ ## \triangle F=2 box implications ## $\triangle F=Ib \rightarrow s$ QCD penguins No significant discrepancy between $b \rightarrow ccs$ and s-penguin measurements. However, there may be a tendency and effects $O(\delta\beta\sim4^\circ)$ are not excluded. The effect of the same s-penguins can be measured at LHCb both in the B_d and B_s system. Belle-II may improve further on B_d decays. An O(few degrees) measurement can reveal NP effects in s-penguins ## \triangle F=I box in b \rightarrow s QCD penguin: B_s $\rightarrow \Phi \Phi$ The phase in the $b \rightarrow s$ box diagram is constrained to be small (within $\pm 4.0^{\circ}$ from direct or $\pm 0.9^{\circ}$ indirect measurements). Angular analysis is needed in $B_s \rightarrow \Phi \Phi$ decays, to disentangle statistically the CP-even and CP-odd components. Total CP-even CP-odd S-wave $$\varepsilon D^2 = (3.29 \pm 0.48)\%$$ The analysis with 1/fb (0.8k candidates) results in a non-parabolic likelihood profile: $$\Phi_s$$ is within [-136,-53)° at 68% CL With a p-value of 16% for the SM hypothesis. Still a long path to walk ## \triangle F=1b \rightarrow s,d QCD penguins: Direct CP violation in B \rightarrow 3h In principle, 3-body charmless B decays is also a way to access γ , trough the interference between tree and penguin decays \rightarrow not a tree level measurement. **LHCb** has **preliminary** measurements of large integrated along Dalitz plot CP asymmetries: **b** $$\rightarrow$$ s QCD penguin (LHCb-CONF-2012-18) $A_{CP}(B^{\pm} \rightarrow K^{\pm}\pi\pi) = 0.034 \pm 0.009 \pm 0.008$ $A_{CP}(B^{\pm} \rightarrow K^{\pm}KK) = -0.046 \pm 0.009 \pm 0.009$ **b** $$\rightarrow$$ **d QCD penguin** (LHCb-CONF-2012-28) $A_{CP}(B^{\pm}\rightarrow\pi^{\pm}KK)=-0.153\pm0.046\pm0.020$ $A_{CP}(B^{\pm}\rightarrow\pi^{\pm}\pi\pi)=0.120\pm0.020\pm0.020$ ## \triangle F=1b \rightarrow s,d QCD penguins: Direct CP violation in B \rightarrow 3h Interestingly, the larger CP violation effects appear in special kinematic regions not dominated by narrow resonances. For example, for the decay $B^{\pm} \rightarrow \pi^{\pm} KK$ a large excess of B^{+} over B^{-} decays is observed for $M^{2}(KK) < 1.5$ GeV²/c⁴, as previously indicated by BABAR. Some kind of hadron dynamics is working to generate such large A_{CP} . #### \triangle F=1EW penguins in b \rightarrow s transitions: B $^{\pm}\rightarrow$ K $^{\pm}\mu$ μ The decay $B^{\pm} \rightarrow K^{\pm} \mu \mu$ is complementary to $B \rightarrow K^{*} \mu \mu$, as the spin of K^{\pm} implies much larger sensitivity to new scalar and tensor contributions. $b \rightarrow s (|V_{tb}V_{ts}| \alpha \lambda^2)$ Angular analysis only depends on one angle, and A_{FB} is expected to be very close to zero in the SM. LHCb measurement: BR(B $$^{\pm} \rightarrow K^{\pm} \mu \mu) = (4.36\pm0.15\pm0.18)\times10^{-7}$$ compared with previous W.A. (4.8±0.4)×10⁻⁷ ## \triangle F=1EW penguins in b \rightarrow d transitions: B $^{\pm}\rightarrow\pi^{\pm}\mu$ μ The decay $B^{\pm} \rightarrow \Pi^{\pm} \mu \mu$ is suppressed by $|V_{td}|/|V_{ts}|$. LHCb has a first observation (5.2σ) of this decay with I/fb data. BR(B $$^{\pm}\rightarrow\pi^{\pm}\mu \mu)=$$ (2.3 \pm 0.6 \pm 0.2)×10⁻⁸ in agreement with SM expectations. The rarest B decay ever observed, as we wait for $B_s \rightarrow \mu \mu$ to reach 5σ . ## \triangle F=1EW penguins in b \rightarrow s transitions: B \rightarrow K(*) μ μ Isospin analysis | # of evts | BaBar | Belle | CDF | LHCb | μ^{+} \bar{b} \bar{s} | |----------------------------------|----------------------|----------------------|---------------------|--------------------|---| | | 2012 | 2009 | 2011 | 2011 | u,c,t $\mu^ B^{0/+}$ d/u d/u $K^{0/+(*)}$ | | | 471 M <i>BB</i> | $605 { m fb}^{-1}$ | $6.8 { m fb}^{-1}$ | 1 fb ⁻¹ | $-\frac{\bar{b}}{\sqrt{20}}$ | | $B^0 \to K^{*0} \ell \bar{\ell}$ | $137 \pm 44^\dagger$ | $247 \pm 54^\dagger$ | 164 ± 15 | 900 ± 34 | $B^{0/+}$ $W^ d/u$ $K^{0/+(*)}$ | | $B^+ o K^{*+} \ell \bar{\ell}$ | | | 20 ± 6 | 76 ± 16 | $\mathcal{B}(B^0 o \mathcal{K}^{(*)0}\mu^+\mu^-) - rac{ au_0}{ au_+}\mathcal{B}(B^\pm o \mathcal{K}^{(*)\pm}\mu^+\mu^-)$ | | $B^+ o K^+ \ell \bar{\ell}$ | $153\pm41^\dagger$ | $162\pm38^{\dagger}$ | 234 ± 19 | 1250 ± 42 | $\Delta_{i} = \frac{1}{2}$ | | $B^0 \to K_S^0 \ell \bar{\ell}$ | | | 28 ± 9 | 60 ± 19 | $\mathcal{B}(B^0 \to K^{(*)0} \mu^+ \mu^-) + \frac{\tau_0}{\tau_+} \mathcal{B}(B^\pm \to K^{(*)\pm} \mu^+ \mu^-)$ | Within the SM the decays $\mathbf{B} \rightarrow \mathbf{K}^{(*)} \mu \mu$ and $\mathbf{B}^+ \rightarrow \mathbf{K}^{(*)+} \mu \mu$ are expected to have very similar BR, (O(%) differences at low \mathbf{q}^2) $\rightarrow A_1(\mathbf{B} \rightarrow \mathbf{K}^* \gamma) = 0.07 \pm 0.03$. #### \triangle F=IEW penguins in b \rightarrow s transitions: B \rightarrow K(*) μ μ Isospin analysis While this is indeed what is observed for $\mathbf{B} \rightarrow \mathbf{K}^* \mu \mu$ and $\mathbf{B}^+ \rightarrow \mathbf{K}^{*+} \mu \mu$, recent LHCb results seem to confirm previous less precise measurements of the isospin asymmetry in $\mathbf{B} \rightarrow \mathbf{K} \mu \mu$ and $\mathbf{B}^+ \rightarrow \mathbf{K}^+ \mu \mu$ decays to be significantly negative (>4 σ). No physics model can explain this results... looking forward to the analysis of 3/fb at LHCb. ## \triangle F=1 Higgs penguins in s \rightarrow d transitions: Kaon decays The pure leptonic decays of **K,D** and **B** mesons are a particular interesting case of EW penguin. The **helicity suppression** of the vector(-axial) terms, makes these decays particularly sensitive to new (pseudo-)scalar interactions \rightarrow **Higgs penguins!** BR($K_L \rightarrow \mu \mu$)=(6.84±0.11)×10⁻⁹ (BNL E871, PRL84 (2000)) measured to be in agreement with SM, but completely dominated by absorptive (long distance) contributions. In the case of $K_s \rightarrow \mu \mu$ the absorptive part is calculated to be 5×10^{-12} as it is proportional to Im($V_{td}V_{ts}$). NP enhancement up to 10^{-11} is possible. The best existing limits on $K_s \rightarrow II$ at 90% C.L. are: BR($$K_s \rightarrow \mu \mu$$)<3.2x10⁻⁷ (PLB44 (1973)) BR($K_s \rightarrow ee$) <9x10⁻⁹ (KLOE, PLB672 (2009)) In particular a measurement of BR($K_s \rightarrow \mu \mu$) of O(10⁻¹⁰-10⁻¹¹) would be a clear indication of NP in the dispersive part, and would increase the interest of a precise measurement of K⁺ $\rightarrow \pi^+ \nu \nu$. ## \triangle F=1 Higgs penguins in s \rightarrow d transitions: Kaon decays LHC produces 10^{13} K_s/fb in the LHCb acceptance. Trigger was not optimized for this search in 2011 (it is for the 2012 data taking period). Excellent LHCb invariant mass resolution critical to reduce peaking bkg. Mass distribution compatible with bkg hypothesis: BR($K_s
\rightarrow \mu \mu$)<11(9)x10⁻⁹ at 95(90)% C.L. x30 improvement! Excellent prospects to reach the interesting region ~10⁻¹¹ with the LHCb upgrade. ## \triangle F=1 Higgs penguins in c \rightarrow u transitions: Charm decays **Charm decays** are complementary to B and K decays, because in the loops the relevant quarks are down-type rather than up-type. Short distance contribution to $D \rightarrow \mu \mu$ decays is $O(10^{-18})$ within the SM. **Long distance** contributions could be indeed much larger, but they are limited to be below 6×10^{-11} from the existing limits on $D \rightarrow \gamma \gamma$: $$\mathcal{BR}^{(\gamma\gamma)}(D^0 o \mu^+\mu^-) \simeq 2.7 imes 10^{-5} \mathcal{BR}(D^0 o \gamma\gamma)$$ Phys.Rev. D66 (2002) 014009 BABAR result BR(D $\rightarrow \gamma \gamma < 2.2 \times 10^{-6} @90\% C.L.$) Phys. Rev. D85 (2012) 091107 Charm decays complement K and B mesons decays. ## \triangle F=1 Higgs penguins in c \rightarrow u transitions: Charm decays Experimental control of the peaking background is crucial ($D \rightarrow \pi\pi$). Best existing limit before spring 2012 was from Belle, <1.4x10⁻⁷@90%C.L. LHCb-PAPER-2013-013 <7.6x10⁻⁹@95%C.L. (factor ~20 improvement) LHCb results using 0.9/fb of $D^* \rightarrow D\pi$: CMS results with 0.09/fb: <5.4×10⁻⁷@90%C.L. CMS-PAS-BPH-11-017 Candidates / $(0.5 \text{ MeV}/c^2)$ Candidates / (10 MeV/ c^2 120 LHCb LHCb (a) (b) 100 80 60 40 20 \rightarrow D(K π) π $D^{*+} \rightarrow D(\mu \mu) \pi^{+}$ 140 145 150 1850 1950 2000 1800 1900 $\Delta \; m_{\mu^-\mu^+} \, [{\rm MeV}/c^2]$ $m_{\mu^+\mu^-} [{\rm MeV}/c^2]$ BABAR, arXiv:1206.5419, update for summer 2012 show a slight excess of candidates (8 observed, 3.9±0.6 bkg) which was interpreted as a two-sided 90% C.L. limit, [6,81]x10-8, in tension with LHCb results. LHCb will study the theoretical clean region between 8x10-9 and 10-11 | Observable
class of observables) | SM
prediction | Ultimate
th. error | Present
result | Future
(S)LHCb | Future
SuperB | Future
Other | |---|---|--|-----------------------------------|---|---------------------------|---| | , | | | | (S)LHCb | Superb | Ouler | | $ V_{us} $ $[K \rightarrow \pi \ell \nu]$ | input | 0.1% _(Latt) | 0.2252 ± 0.0009 | _ | 107 0 507 | | | $ V_{cb} $ [×10 ⁻³] [B $\rightarrow X_c \ell \nu$] | input | 1% | 40.9 ± 1.1
4.15 ± 0.49 | _ | 1% _{excl} , 0.5% | | | $ V_{ub} $ [×10 ⁻³][$B \rightarrow \pi \ell \nu$] | input | 5% _(Latt)
< 1° | $(70^{+27}_{-30})^{\circ}$ | 0.9° | 3%exel, 2%ir
1.5° | nel. | | $\gamma \qquad [B \to DK]$ | input
2 β | ≤ 0.01 | 0.671 ± 0.023 | 0.0035 | 0.0025 | | | $S_{B_d \to \psi K}$ | $\frac{2\beta}{2\beta_s}$ | ≤ 0.01
≤ 0.01 | -0.002 ± 0.087 | 0.0035 | 0.0023 | | | $S_{B_s \to \psi \phi, \psi f_0(980)}$ | $2\beta_s^{eff}$ | | -0.002 ± 0.087 | 0.008 | _ | | | $S_{[B_s \to \phi \phi]}$ | | ≤ 0.05 | _ | II | - | | | $S_{[B_s \to K^{\bullet 0} \bar{K^{\bullet 0}}]}$ | $2\beta_s^{eff}$ | ≤ 0.05 | - | 0.02 | - | | | $S_{[B_d \to \phi K^0]}$ | $2\beta^{eff}$ | ≤ 0.05 | 0.45 + 0.00 | 0.03 | 0.02 | | | $S_{[B_d \to K_S^0 \pi^0 \gamma]}$ | 0 | ≤ 0.05 | -0.15 ± 0.20 | - | 0.02 | | | $S_{[B_s o \phi \gamma]}$ | 0 | $\lesssim 0.05$ | - | 0.02 | - | | | $A_{\rm SL}^{\rm d}[\times 10^{-3}]$ | -0.5 | 0.1 | -5.8 ± 3.4 | 0.2 | 4 | | | $A_{\rm SL}^{s}[\times 10^{-3}]$ | 2.0×10^{-2} | < 10 ⁻² | -2.4 ± 6.3 | 0.2 | 407 | | | $\mathcal{B}(B \to \tau \nu)[\times 10^{-4}]$ | 1 | 5%Latt | (1.14 ± 0.23) | _ | 4% | | | $\mathcal{B}(B \to \mu\nu)[\times 10^{-7}]$
$\mathcal{B}(B \to D\tau\nu)[\times 10^{-2}]$ | 4 | 5%Latt | < 13 | [under study] | 5% | | | $\mathcal{B}(B \to D\tau\nu)[\times 10^{-2}]$
$\mathcal{B}(B \to D^*\tau\nu)[\times 10^{-2}]$ | 1.02 ± 0.17 | 5%Latt | 1.02 ± 0.17 | [under study] | 2% | | | $\mathcal{B}(B \to D^- \tau \nu)[\times 10^{-5}]$
$\mathcal{B}(B_s \to \mu^+ \mu^-)[\times 10^{-9}]$ | 1.76 ± 0.18
3.5 | 5%Latt
5%Latt | 1.76 ± 0.17
< 4.2 | 0.15 | 2% | | | $R(B_{s,d} \rightarrow \mu^+\mu^-)$ [×10 °]
$R(B_{s,d} \rightarrow \mu^+\mu^-)$ | 0.29 | $\sim 5\%$ | < 4.2 | ~ 35% | - | | | $R(B_{s,d} \rightarrow \mu^+ \mu^-)$ C_0V^2 | 4.26 ± 0.34 | ~ 370 | _ | 2% | _ | | | $q_0(A_{B\to K^*\mu^+\mu^-}^{FB})[\text{GeV}^2]$ | $< 10^{-3}$ | | | II | - | | | $A_{\rm T}^{(2)}(B \rightarrow K^*\mu^+\mu^-)$ | < 10 ⁻³ | | | 0.04 | 107 | | | $A_{CP}(B \rightarrow K^*\mu^+\mu^-)$ | | 1007 | - 16 | 0.5% | 1% | | | $B \rightarrow K \nu \bar{\nu} [\times 10^{-6}]$ | 4 | $10\%_{\text{Latt}}$
$< 10^{-3}$ | < 16
0.91 ± 0.17 | O(1%) | 0.7
2.7% | | | $ q/p _{D-\text{mixing}}$
ϕ_D | ≤ 0.1% | < 10 | 0.91 ± 0.17 | O(1%) | 1.4° | | | $a_{\text{CP}}^{\text{dir}}(\pi\pi)(\%)$ | ≲ 0.1% | | 0.20 ± 0.22 | 0.015 | [under study | 1 | | $a_{CP}^{CP}(KK)(\%)$ | ≲ 0.3 | | -0.23 ± 0.17 | 0.010 | [under study | - | | $a_{\text{CP}}^{\text{dir}}(\pi\pi\gamma, KK\gamma)$ | €0.3% | | 0.20 1 0.11 | [under study] | [under study | - | | $\mathcal{B}(\tau \to \mu \gamma)[\times 10^{-9}]$ | ~ 0.070 | | < 44 | - | 2.4 | | | $\mathcal{B}(\tau \to 3\mu)[\times 10^{-10}]$ | 0 | | < 210(90% CL) | 1-80 | 2 | | | _(| | | (() | | (| $\sim 0.1 \mathrm{MEG}$ | | $\mathcal{B}(\mu \to e \gamma)[\times 10^{-12}]$ | 0 | | < 2.4(90% CL) | | ₹ ~ (| 0.01 PSI-future | | | | | | | | 0.01 Project X | | $B(\mu N \rightarrow eN)(Tl)$ | 0 | | $< 4.3 \times 10^{-12}$ | | | 10^{-18} PRISM | | $B(\mu N \rightarrow eN)(Al)$ | 0 | | _ | | 10-16 | COMET, Mu2e | | | | | | 1 . 1 . 14 | | $\sim 10\% \text{ NA}62$ | | $B(K^+ \to \pi^+ \nu \bar{\nu})[\times 10^{-11}]$ | 8.5 | 8% | $17.3^{+11.5}_{-10.5}$ | Isidori, Mai | îtinez- | $\sim 5\%$ ORKA | | | | | | C (O- | ^ | 2% Project X | | $R(K_L \rightarrow \pi^0 \nu \bar{\nu})(\sim 10^{-11})$ | 9.4 | 10% | ~ 2600 | santos (Op | pen _ | ∠ 100% кото | | | | | | Symposium |) | √ 5% Project X | | $\mathcal{B}(K_L \to \pi^0 e^+ e^-)_{SD}$ | 1.4×10^{-11} | 30% | % 28 × 10 ^{−11} | Symposium | <u> </u> | 10% Project X | | Table 5: Status and future prospects of selected $B_{s,d}$, D, K , and LFV observables. The SuperB column refers to | | | | | | | | | a generic super B factory, collecting $50ab^{-1}$ at the $\Upsilon(4S)$. | | | | | | | $\mathcal{B}(K^+ o \pi^+ \nu \bar{ u})[imes 10^{-11}]$ $\mathcal{B}(K_L o \pi^0 \nu \bar{ u})[imes 10^{-11}]$ $\mathcal{B}(K_L o \pi^0 e^+ e^-)_{SD}$ Table 5: Status and future | 8.5 2.4 1.4×10^{-11} The prospects of se | 10%
30%
elected B _{s,d} , L | | Isidori, Mai
Santos (Op
Symposium | rtinez-
pen
n ESPG) | ~ 10% NA62
~ 5% ORKA
~ 2% Project X
~ 100% KOTO
~ 5% Project X
10% Project X | ## **Yields at LHCb and B-factories** | Decay | THCP | LHCb | BELLE | Ratio | | |----------------------------|-------------|------------------------|--------------|------------------------|-----| | $B_u \rightarrow J/\psi K$ | 10049 | $34~\mathrm{pb}^{-1}$ | 41315 | $711 \; { m fb}^{-1}$ | 5.1 | | $B_u o D^0_{CP} \pi$ | 1270 | $34~\mathrm{pb}^{-1}$ | 2163 | $250 \; {\rm fb}^{-1}$ | 4.3 | | $B_d o K\pi$ | 838 | $35~{ m pb}^{-1}$ | 4000 | $480 \; { m fb}^{-1}$ | 2.9 | | $B_u o K\ell\ell$ | 35 | $35~{ m pb}^{-1}$ | 161 | $605 \; { m fb}^{-1}$ | 2.6 | | $B_d o K^* \ell \ell$ | 144 | $165~\mathrm{pb}^{-1}$ | 230 | $605 \; { m fb}^{-1}$ | 2.3 | | $B_d o J/\psi K_S^0$ | 1100 | $33~\mathrm{pb}^{-1}$ | 12681 | $711 \; { m fb}^{-1}$ | 1.9 | | $B_d o K^* \gamma$ | 485 | $88~\mathrm{pb}^{-1}$ | 450 | $78~\mathrm{fb}^{-1}$ | 1.0 | | $B_s \to J/\psi \phi$ | 1414 | $95~\mathrm{pb}^{-1}$ | 45 | $24 \; { m fb}^{-1}$ | 7.9 | | $B_s o J/\psi f_0$ | 111 | $33~\mathrm{pb}^{-1}$ | 63 | $121 \; { m fb}^{-1}$ | 6.5 | | $B_s \to \phi \gamma$ | 60 | $88~\mathrm{pb}^{-1}$ | 18 | $24 \; {\rm fb}^{-1}$ | 0.9 | | $D^+ \to \phi \pi$ | 90 <i>k</i> | 35 pb^{-1} | 237 <i>k</i> | $955 \; { m fb}^{-1}$ | 10 |