The Higgs boson at the LHC: state of the art

Petra Van Mulders Vrije Universiteit Brussel on behalf of the CMS & ATLAS collaborations

Vrije Universiteit Brussel

Breakthrough of the year in 2012

- The Higgs boson or Standard Model scalar:
 - Discovered on July, 4th 2012, in the news world-wide!
 - Predicted almost 50 years ago to explain electroweak symmetry breaking through the Brout-Englert-Higgs mechanism
 - One of the main physics goals of the LHC and the ATLAS and CMS collaborations
 - All measurements indicate that the discovered particle looks very much as the Standard Model Higgs boson
 - EPS Prize 2013 awarded to the ATLAS and CMS collaborations

The Higgs boson factory and hunters

Outstanding performance of the Large Hadron Collider and of the detectors

Higgs boson production

Higgs boson decay modes

4 production channels, 5 main decay modes + W, Z, τ and t decay too \rightarrow numerous results from ATLAS & CMS, only few highlighted

References

CMS Higgs public results

- $H \rightarrow \gamma \gamma$: CMS-PAS-HIG-13-016, CMS-PAS-HIG-13-001
- $H \rightarrow ZZ$: CMS-PAS-HIG-13-002
- $H \rightarrow WW$: CMS-PAS-HIG-13-003, CMS-PAS-HIG-13-022, CMS-PAS-HIG-13-009, CMS-PAS-HIG-13-017
- $H \rightarrow bb: CMS-PAS-HIG-13-011, CMS-PAS-HIG-13-012$
- H → ττ: CMS-PAS-HIG-13-004, CMS-PAS-HIG-12-053
- Combined, couplings, properties: CMS-PAS-HIG-13-005 + twiki
- ttH: CMS-PAS-HIG-13-015, CMS-PAS-HIG-13-019
- $H \rightarrow Z\gamma$: CMS-PAS-HIG-13-006
- $H \rightarrow invisible: CMS-PAS-HIG-13-013, CMS-PAS-HIG-13-018$

ATLAS Higgs public results

- $H \rightarrow \gamma \gamma$: ATLAS-CONF-2013-072, ATLAS-CONF-2013-012, ATLAS-CONF-2013-029
- $H \rightarrow ZZ$: ATLAS-CONF-2013-013
- H → WW: ATLAS-CONF-2013-075, ATLAS-CONF-2013-030,ATLAS-CONF-2013-031
- $H \rightarrow bb: ATLAS-CONF-2013-079$
- $H \rightarrow \tau \tau$: ATLAS-CONF-2012-160
- Combined, couplings, properties: arXiv:1307.1427, arXiv:1307.1432, ATLAS-CONF-2013-034
- ttH: ATLAS-CONF-2013-135, ATLAS-CONF-2013-080
- $H \rightarrow Z\gamma$: ATLAS-CONF-2013-009
- $H \rightarrow \mu\mu$: ATLAS-CONF-2013-010
- $H \rightarrow invisible: ATLAS-CONF-2013-011$
- ... and many more!

... and many more!

Cross sections and branching fractions from:

6 https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

Preview

- Introduction
- Highlights from ATLAS and CMS:
 - H → bosons
 - $H \rightarrow fermions$
 - Properties of the observed particle
 - Rare processes
- Summary & conclusion

$H \rightarrow bosons$

CMS H $\rightarrow \gamma\gamma$: fitting the m_{$\gamma\gamma$} distribution

- Primary vertex selection: dedicated MVA technique
- Analysis in categories:
 - Lepton or ME₁ tag (WH/ZH)
 - Dijet tag (VBF)
 - Untagged: 4 categories, based on MVA classifier
- Background fitted from data
 - Prompt γγ ~70%
 - Prompt γ + jet \rightarrow fake γ
- Cross-check analysis: Cut-in-categories (CiC)
- Significance:

MVA: 3.2σ (4.2σ expected) CiC: 3.9σ (3.5σ expected)

Signal strength:

μ = **0.78**^{+0.28}_{-0.26} (m_H = 125 GeV)

Mass: m_H = 125.4 ± 0.8 GeV

ATLAS H $\rightarrow \gamma\gamma$: clear observation

- Primary vertex selection: diphoton pointing
- Analysis in categories:
- alysis in categories: لو Lepton or dijet (low mass) or ME_{T} tag (WH/ZH)
 - Dijet tag (VBF) using MVA
 - Untagged: 9 categories based on p_{τ}, η , conversion
- **Background estimated** from data:
 - Prompt $\gamma\gamma$: ~75%
 - γ+jet
- **Significance:** $m_{H} = 126.5 \text{ GeV}$

7.4 σ (4.3 σ expected)

Signal strength:

 $\mu = 1.65^{+0.34}_{-0.30}$ Mass: $m_{H} = 126.8 \pm 0.7 \pm 0.2 \text{ GeV}$

ATLAS H $\rightarrow \gamma \gamma$: differential distributions

syst. unc.

 $- - \cdot XH = VBF + VH + t\overline{t}H$

<u>, , , | , , | , , , | , , | , , , | , , | , , | , , | , , | , , | , , | , , | , | , , | , | , , | , | , , | , | , , | , | , , | , | , , | , | , , | , | , , | </u>

 $qq \rightarrow H$ NLO+PS (POWHEG+PY8) + XH

 $gg \rightarrow H$ NNLO+NNLL (HRES1.0) + XH

y_γ

ATLAS Preliminary + data

 $50 \vdash H \rightarrow \gamma \gamma, \sqrt{s} = 8 \text{ TeV}$

 $L \, dt = 20.3 \, fb^{-1}$

[b]

dV

 $d\sigma_{fid}$ /

40

30

20

10

latio to Powheg

ATLAS-CONF-2013-072

- Probe the spin and parity and test theoretical description of QCD
- Kinematic region:

 $|\eta|{<}2.37,\,E_{\scriptscriptstyle T}/m_{\scriptscriptstyle \gamma}>0.35(0.25)$ for (sub)leading $\gamma,$ 105 GeV $< m_{\scriptscriptstyle \gamma}<160$ GeV

- 8 observables: p_T^{γ} , $|\cos\theta^*|$, $p_T^{\gamma j j}$, $\sigma_{N j ets=i}/\sigma_{N j ets=i}$
- No deviation from the standard moder

ATLAS H \rightarrow ZZ^{*} \rightarrow 4I: clear observation

[GeV]

80

60

E 70

- ZZ \rightarrow 4e or 4 μ or 2e2 μ
- Categories:
 - 2 well-separated jets (VBF)
 - additional lepton (VH)
 - untagged (ggH)
- Background contributions: direct ZZ ($Z\gamma^*$), Zbb, tt, (W)Z+(γ)+jets
- Recovery of final state radiation γ^*
- Shape analysis using the invariant mass of the 4 leptons: m₄

ATLAS arXiv:1307.1427

- Significance: 6.6 σ (4.4 σ expected)
- Signal strength: $\mu = 1.7^{+0.5}_{-0.4}$
- Mass: $m_{H} = 124.3^{+0.6} + 0.5 0.3$ GeV

CMS H \rightarrow ZZ^{*} \rightarrow 4I: clear observation

- $ZZ \rightarrow 4e \text{ or } 4\mu \text{ or } 2e2\mu \text{ or } 2l2\tau$
- Categories: <2 jets (ggH) or ≥2 jets (VBF)
- 3 variables used in shape analysis:
 - Invariant mass: m₄
 - V_D (VBF) or p_T^{4}/m_4 (ggH)
 - $K_D = P_{sig}/(P_{sig} + P_{bkg})$ matrix element likelihood (MELA)

Significance: 6.7σ (7.1 σ expected) Signal strength: $\mu = 0.91^{+0.30}_{-0.24}$ Mass: $m_{H} = 125.8 \pm 0.5 \pm 0.2$ GeV

CMS PAS HIG-13-002

ATLAS H \rightarrow WW^{*} \rightarrow 2l2v: evidence

- Final states: ee, eµ, µµ + ME_T
- Low mass resolution because 2 neutrinos
- Events classified: 0, 1, \geq 2 jets (ggH & VBF)
- Background: WW, tt, tW, Z/γ^* , W+jets, diboson
- H spin 0 \rightarrow W spin correlation propagated to leptons: used to reject WW \rightarrow small m_{II}, small $\Delta \phi_{II}$
- m_{T} distribution is fitted in bins of m_{II} /# jets

CMS H \rightarrow WW^{*} \rightarrow 2l2v: close to observation

- Final states: ee, eµ, µµ + ME_T
- 0 and 1 jet categories (ggH)
- Cut-based approach for ee and μμ: m_I, Δφ_I, m_T requirements optimized for each m_H value
- $e\mu: 2D (m_T, m_H)$ shape analysis

CMS PAS HIG-13-003

Significance (m_H =125 GeV): 4.0 σ (5.1 σ expected)

15 Signal strength: $\mu = 0.76 \pm 0.21$

V-mediated H→WW^{*}: increasing sensitivity

- Separate CMS H → WW VBF analysis (fit to m_{\parallel} distribution)
- Both ATLAS and CMS searched for VH → VWW:
 - ATLAS: $V \rightarrow$ leptons
 - CMS: $V \rightarrow$ leptons or $V \rightarrow$ hadrons

Significance ($m_H = 125 \text{ GeV}$): 3.8 σ (4.0 σ expected)

Higgs mass [GeV]

ATLAS H \rightarrow bb produced with W or Z ► Data VH(bb) (best fit)

ATLAS Preliminary

√s = 8 TeV ∫Ldt = 20.3 fb⁻¹ $50 \stackrel{\vdash}{\models} 1$ lep., 2 jets, 2 tags, p_{\downarrow}^{v} >200 GeV

 $60 - \sqrt{s} = 7 \text{ TeV} \int Ldt = 4.7 \text{ fb}^{-1}$

40

30

20

10

VZ Multijet

W+bb W+bl W+cc

W+cl W+I

tī t, s+t chan

Uncertainty
 Pre-fit background
 VH(bb) (μ=1.0)

3σ evidence @ Tevatron arXiv:1303.6346

- $W \rightarrow ev, \mu v \text{ and } Z \rightarrow ee, \mu \mu, vv + 2 \text{ b jets}$
- different regions according to p^{W/Z} and the number of jets
- Background: tt, V+jets, VV
- Shape of m_h fitted over all categories

CMS H \rightarrow bb produced with W or Z

95% Asymptotic CL Limit on ס/ס_{SM}

- W \rightarrow ev, $\mu\nu$, $\tau\nu$ and Z \rightarrow ee, $\mu\mu$, $\nu\nu$ + 2 b jets
- 3 different regions according to p^{W/Z}
- m_{bb} resolution improved using MVA
- Events with v classified using MVA into tt, V+jets, VV or signal categories (à la CDF)
- Another MVA is used to discriminate signal from background → shape is fitted

CMS H \rightarrow bb produced through VBF

Z+jets

tt

- 1 or 2 b jets + 2 jets with large rapidity gap
- Background: QCD multijets, hadronic decays of W,Z, top
- MVA analysis with input variables sensitive to the VBF topology with 2 b jets
- Fit the m_h distribution in each **MVA** category

0.6

0.4

0.2

0.8

ANN Output

CMS Preliminary Vs = 8 TeV

Category

not used

Events / 0.04

10⁵

 10^{4}

 10^{3}

10²

10

-0.4

Data / MC

CMS H $\rightarrow \tau\tau$: close to evidence

- Final states: $e\mu$, $\mu\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$ + jets
- 1 or 2 jets (0-jet is control region)
- Require v from τ nearly collinear with visible decay products
- $\mu\mu$ channel: Z $\rightarrow \mu\mu$ suppressed by MVA
- Reconstruct m_π distribution from
 visible and invisible decay products →
 with SVFit ~20% mass resolution

21

ATLAS H $\rightarrow \tau\tau$: not the final result

- Final states: ee, eµ, µµ, e τ_h , µ τ_h , τ_h τ_h + jets
- Similar techniques as CMS
- Reconstruct m_π distribution from visible and invisible decay products → with MMC ~13-20% mass resolution

ATLAS-CONF-2012-160

For $m_H = 125$ GeV:

- Significance: 1.1σ (1.7 σ expected)
 - Signal strength: 0.7 ± 0.7

Summary of the observed excesses

Decay mode	Expected (σ)	Observed (σ)	σ for m _H (Ge)	/)
ZZ	4.4	6.6	124.3	ATLAS arXiv:1307 1/27
γγ	4.3	7.4	126.5	
WW	4.0	3.8	125.0	ATLAS-CONF-2013-075
ττ	1.7	1.1	125.0	ATLAS-CONF-2012-160

CMS/	CMS PAS HI	G-13-005	m _H =125.7 C	GeV
	Decay mode	Expected (o)	Observed (o)
	ZZ	7.1	6.7	
	γγ	3.9	3.2	
	WW	5.3	3.9	
	ττ	2.6	2.8	Evidence for coupling to third
	bb	2.2	2.0	Significance: 3.4σ (3.4σ expected)

→ see talks of Garoe Gonzalez Parra, Qiang Li, Stephen Cole

The Higgs boson mass measurement

• Mass measured from the H $\rightarrow \gamma\gamma$ and H $\rightarrow ZZ^* \rightarrow 4I$ mass distributions

Signal strengths not fixed to SM expectation, but profiled in the likelihood fit

Global electroweak fit: impressive consistency

The combined signal strength

ATLAS arXiv:1307.1427

CMS PAS HIG-13-005

ATLAS ($\gamma\gamma$,WW*,ZZ*): $\mu = 1.33 \pm 0.20$ (with bb and $\tau\tau$: $\mu = 1.23 \pm 0.18$) CMS ($\gamma\gamma$,WW*,ZZ*,bb, $\tau\tau$): $\mu = 0.80 \pm 0.14$

Evidence for production via vector boson fusion

- Separate VBF+VH channels from ttH+ggF channels
- Analyses not 100% pure → use simulation to correct for signal contamination from other production processes

ATLAS ($\gamma\gamma$,WW*,ZZ*): $\mu_{VBF}/\mu_{ggF+ttH} = 1.4^{+0.4}_{-0.3}$ (stat)^{+0.6}_{-0.4}(syst) \rightarrow evidence (3.3 σ) that a fraction of Higgs production occurs through VBF

Testing the Higgs boson couplings

 ATLAS & CMS follow the recommendations of the LHC Higgs Cross Section Working Group (arXiv:1307.1347)

$$\sigma \cdot B \left(i \to H \to f \right) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

- Couplings tested by introducing scalefactors $\kappa_{\!j}$
- σ_j and Γ_j of particle j scale with κ_j^2 compared to SM prediction, e.g. the cross section of gg \rightarrow H $\rightarrow \gamma\gamma$ can be expressed as:

$$\frac{\sigma \cdot \mathbf{B} (gg \to H \to \gamma\gamma)}{\sigma_{\mathrm{SM}}(gg \to H) \cdot \mathbf{B}_{\mathrm{SM}}(H \to \gamma\gamma)} = \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$

- The following tests have been performed by ATLAS & CMS:
 - Couplings to the vector bosons and fermions
 - Ratio of couplings to the W and Z bosons (custodial symmetry)
 - Loop induced couplings & BR_{BSM}
 - Test for asymmetries in the couplings to fermions

Couplings to fermions and bosons

- Assume a scalefactor κ_{F} for fermions and a scalefactor κ_{V} for bosons: $\rightarrow \text{ all } \Gamma_{j} \text{ scale either as } \kappa_{F}^{2} \text{ or as } \kappa_{V}^{2}, \text{ except } \Gamma_{\gamma} \text{ which scales as } |\alpha \kappa_{F} + \beta \kappa_{V}|^{2}.$
- No contributions from physics beyond the SM ($\Gamma_{BSM}=0$)

Constraints on production and decay loops

- New physics may appear in the loops gg \rightarrow H and H $\rightarrow \gamma\gamma$
- Allow new particles to contribute to the total Higgs boson width
- Assume all other couplings are equal to unity (SM strength)
- Keep κ_{g} and κ_{γ} as free parameters

Consistent with SM prediction

Upper limit on the decay width from H $\,\rightarrow\,\gamma\gamma$

 Signal distribution is a convolution of a Breit-Wigner distribution with a Gaussian distribution

Tests of different spin-parity hypotheses

- The SM Higgs boson is spin-0 and CP-even $(J^{P} = 0^{+})$
- Spin 1 hypothesis strongly disfavoured by the observation of H $\rightarrow \gamma\gamma$ (Landau-Yang)
- Test the 0⁺ hypothesis against 0⁻, 1⁺, 1⁻, 2⁺, using observables sensitive to the spin and parity of the new boson
- Test statistic:

33

$$q = \log \frac{\mathcal{L}(J^P = 0^+, \hat{\hat{\mu}}_{0^+}, \hat{\hat{\theta}}_{0^+})}{\mathcal{L}(J^P_{\text{alt}}, \hat{\hat{\mu}}_{J^P_{\text{alt}}}, \hat{\hat{\theta}}_{J^P_{\text{alt}}})} \longrightarrow \text{alternative hypothesis}$$

• Distributions for q for 0^+ and for J^P_{alt} are obtained from toy experiments $\# \tan^2$

Exclude
$$J_{alt}^{P}$$
 at X% CL if:
 $CL_{s}(J_{alt}^{P}) = \frac{p_{0}(J_{alt}^{P})}{1 - p_{0}(0^{+})} < 1 - (X/100)$
Very small $p_{0}(J_{alt}^{P})$
 \rightarrow data disagrees with J_{alt}^{P}

CM bypathacic

Test 0⁻ hypothesis with H \rightarrow ZZ*

- $H \rightarrow ZZ^* \rightarrow 4$ charged leptons
- Full reconstruction of the final state
- Kinematic observables: m_{z1}, m_{z2} and the 5 production and decay angles
- ATLAS: observables combined with MVA
- CMS: observables used in matrix element likelihood approach

ATLAS: 0[°] hypothesis is excluded @ 97.8% CL ³⁴ CMS: 0[°] hypothesis is excluded @ 99.84% CL

Test 2^+_m hypothesis with H \rightarrow ZZ*/WW*/ $\gamma\gamma$

- Graviton resonance 2^+_m produced either through gg or qq \rightarrow different f_{qq}
- $H \rightarrow WW$: MVA combining $m_{\parallel}, \Delta \phi^{\parallel}, p_T^{\parallel}, m_T$

35

• $H \rightarrow \gamma \gamma$: observable is scattering angle in Collins-Sopper frame:

CMS H \rightarrow ZZ*/WW*: 2⁺_m excluded @ 99.4% CL for f_{qq} = 0

Summary of the properties

- The mass of the new boson is measured with a precision of 0.50%!
 ATLAS: m_H = 125.5 ± 0.2 (stat.) ^{+0.5}_{-0.6} (syst.) GeV
 CMS: m_H = 125.7 ± 0.3 (stat.) ± 0.3 (syst.) GeV
- The combined signal strength is compatible with unity: ATLAS (γγ,WW*,ZZ*,bb,ττ): μ = 1.23±0.18 CMS (γγ,WW*,ZZ*,bb,ττ): μ = 0.80±0.14
- Evidence for production via vector boson fusion established
- Couplings to fermions and bosons are consistent with the SM prediction
 → see talks of Stefan Gadatsch and Stefano Casasso
- An upper limit on the decay width is obtained for the first time
- The observed boson is consistent with the scalar hypothesis (0⁺) and other hypotheses have been rejected at 97% CL or more
 - → see talks of Manuela Venturi and Kalanand Mishra

Rare processes

ATLAS H $\rightarrow \gamma\gamma$ produced with tt

- Leptonic channel: $\gamma\gamma$, $\geq 1 e/\mu$, $\geq 1 b jet$, ME₁ > 20 GeV \rightarrow 7 events
- Hadronic channel: $\gamma\gamma$, 0 e/ μ , \geq 6 jets, \geq 2 b jets \rightarrow 11 events

ATLAS-CONF-2013-080

Signal strength: (m_{H} =126.8 GeV) μ < **5.3 (6.4 expected)** @ **95% CL**

CMS H $\rightarrow \gamma\gamma$ produced with tt

- Leptonic channel: $\gamma\gamma$, $\geq 1 e/\mu$, $\geq 2 jets$, $\geq 1 b jet \rightarrow 8 events$
- Hadronic channel: $\gamma\gamma$, 0 e/ μ , \geq 5 jets, \geq 1 b jet \rightarrow 38 events

m_н (GeV)

CMS H \rightarrow bb and H $\rightarrow \tau\tau$ produced with tt

- H \rightarrow bb, fully leptonic tt: \geq 3 jets, \geq 2 b jets, 2 opposite charge e/ μ
- H \rightarrow bb, semi-leptonic tt: \geq 4 jets, \geq 2 b jets, 1 e/ μ
- $H \rightarrow \tau_h \tau_h$: semi-leptonic tt, ≥ 4 jets, ≥ 1 b jet, $2 \tau_h$ jets, $1 \text{ e}/\mu$
- Shape of MVA distributions (depending on # jets, # b jets) is fitted

CMS combination ttH searches

• Combine the H \rightarrow bb/ $\tau\tau$ search with the H $\rightarrow \gamma\gamma$ search

μ < 3.4 (2.7 expected) @ 95% CL

Rapidly becoming sensitive to ttH production!

$H \rightarrow Z\gamma$: test for new physics CMS Preliminary $B(H \rightarrow Z\gamma)$ comparable to $(H \rightarrow \gamma\gamma)$, but $H \rightarrow Z \gamma$ $\sqrt{s} = 7$ TeV, L = 5.0 fb⁻¹ 1600 $\sqrt{s} = 8$ TeV, L = 19.6 fb⁻¹ multiply with $B(Z \rightarrow II)$ Electron + muon channels 1400 Data Sensitive to new physics via loops: 1200 Background Model Events/(2 GeV) Signal m., = 125 GeV x 100 1000 Z 800 Ζ 600 www.wewwy 400 mm 200 Shape analysis: m_{μ} or $\Delta m = m_{\mu} - m_{\mu}$ distribution $\frac{10}{10}$ 120 130 140 150 160 170 m_{lly} (GeV) ATLAS signal strength μ < 18.2 (13.5 exp.) @ 95% CL (m_H = 125 GeV) **CMS signal strength** μ < **10 (12 exp.)** @ **95% CL** (m_H = 125 GeV) CMS Preliminary 95% CL limit on $σ(H→Z\gamma)/\sigma_{SM}(H→Z\gamma)$ Observed Observed $Ldt = 4.6 \text{ fb}^{-1}$, $\sqrt{s} = 7 \text{ TeV}$ BR 40 $\sqrt{s} = 7 \text{ TeV L} = 5.0 \text{ fb}^{-1}$ ----- Expected 35 Median Expected Ldt = 20.7 fb⁻¹, (s = 8 TeV $\sqrt{s} = 8 \text{ TeV L} = 19.6 \text{ fb}^{-1}$ $\pm 1\sigma$ $\left[\sigma \times \, BR\right]_{95\% CL}/\left[\sigma \times\right.$ 35 Expected $\pm 1 \sigma$ 30 $\pm 2\sigma$ Electron + muon channels Expected $\pm 2\sigma$ 30 25 **ATLAS** Preliminary 25 20 20 15 15 10 10 5 0 120 125 130 135 140 145 150 125 130 135 145 150 ľ20 140m_н [GeV] ATLAS-CONF-2013-009 m_{μ} (GeV) CMS PAS HIG-13-006 42

ATLAS H $\rightarrow \mu\mu$: very challenging!

- The only channel where the Higgs coupling to second generation fermions can be measured!
- In the Standard Model: $B(H \rightarrow \mu\mu) \sim 2 \times 10^4$ (much larger in MSSM!)
- Dominant irreducible background $Z/\gamma^* \rightarrow \mu\mu$
- 2 categories: central muons ($|\eta(\mu_{1,2})| < 1$), non-central

Signal strength: μ < 9.8 (8.2 expected) @ 95% CL (m_H = 125 GeV)

Much more statistics needed!

Direct search for $H \rightarrow invisible$

- Many models beyond the SM accommodate invisible decay modes
 → place upper limit on the branching fraction
- CMS: ME₁ + 2 jets consistent with VBF topology
- ATLAS (CMS): ZH production, ME₁ + dilepton pair consistent with Z
- Contributions to the total background are estimated from control regions

For m_{H} =125 GeV

ATLAS (ZH): BR(H → inv) < 0.65 (0.84 exp) @ 95% CL CMS (ZH): BR(H → inv) < 0.75 (0.91 exp) @ 95% CL CMS (VBF): BR(H → inv) < 0.69 (0.53 exp) @ 95% CL

The observed particle looks like the Higgs boson

1 year after the discovery of a new boson, its properties have been measured with increasing precision:

- It couples to bosons (W, Z, γ)
- Direct evidence for couplings to fermions
- Signal strength is as expected
- All coupling tests are compatible with the SM prediction
- Evidence for V-mediated production
- The mass is measured with a great precision
- First direct limit on the width
- It favors the scalar spin-parity (0⁺) hypothesis
- No sign yet (direct or indirect) for BSM contributions

→ see talks of Pamela Ferrari, Daniel Dominiguez Vazquez, Gianni Masetti, Valdir Salustino Guimaraes

We are not there yet...

- The final (ATLAS+CMS combined) results of Run I will come soon:
 - Observation of $H \rightarrow WW$
 - Evidence for H \rightarrow bb and H $\rightarrow \tau \tau$
 - Mass combination, ...
- In 2015: higher center of mass energy and luminosity:
 - More precise measurements
 - Observe $H \rightarrow bb$ and $H \rightarrow \tau \tau$
 - Observation of ttH production
- Ultimately (HL-LHC):
 - Observe Zγ
 - $H \rightarrow \mu\mu$: confirm coupling to the 2nd generation
 - Higgs self-coupling
- The Higgs boson allows us to test the Standard Model and opens an other window on new physics!

We are not there yet...

- The final (ATLAS+CMS combined) results of Run I will come soon:
 - Observation of $H \rightarrow WW$
 - Evidence for $H \rightarrow bb$ and $H \rightarrow \tau \tau$
 - Mass combination, ...
- In 2015: higher center of mass energy and luminosity:
 - More precise measurements
 - Observe $H \rightarrow bb$ and $H \rightarrow \tau \tau$
 - Observation of ttH production
- Ultimately (HL-LHC):
 - Observe Zγ
 - $H \rightarrow \mu\mu$: confirm coupling to the 2nd generation
 - Higgs self-coupling

 The Higgs boson allows us to test the Standard Model and opens an other window on new physics!

Backup

- Asymmetric fermion couplings
- Test of custodial symmetry
- Indirect constraints on BR(H \rightarrow BSM)

Asymmetric fermion couplings

- Assume $\Gamma_{\text{RSM}} = 0$
- Fermion couplings might be modified in 2 Higgs boson doublet models

CMS PAS HIG-13-005

3

Consistent with SM predictions

Test of custodial symmetry

- $\lambda_{\rm WZ} = \kappa_{\rm W}$ / $\kappa_{\rm Z}$
- No contributions from physics beyond the SM ($\Gamma_{BSM}=0$)

Consistent with SM prediction of $\lambda_{wz} = 1$

Constraints on BR($H \rightarrow BSM$)

- New physics may appear in the loops gg \rightarrow H and H $\rightarrow \gamma\gamma$
- $BR(H \rightarrow BSM) = BR_{RSM} = \Gamma_{RSM}/\Gamma_{H}$ (with $\Gamma_{H} = \Gamma_{SM} + \Gamma_{RSM}$)
- Sensitive to invisible and undetectable decay modes
- Free parameters in the fit are: κ_q , κ_γ and BR_{BSM} (others = SM value)

Test $1^+/1^-$ hypothesis with H \rightarrow ZZ* (H \rightarrow WW*)

- Spin 1 hypothesis is not compatible with $H \rightarrow \gamma \gamma$ observation, still tested!
- $H \rightarrow ZZ \rightarrow 4$ leptons:
 - \rightarrow same technique as 0⁻
- ATLAS H \rightarrow WW \rightarrow lvlv: full reconstruction of the final state is not possible, use m_{II}, $\Delta \phi_{II}$, p_T^{II} , m_T and combine with MVA

ATLAS combined: 1⁺ excluded @ 99.97% CL, 1⁻ excluded @ 99.7% CL CMS H \rightarrow ZZ*: 1⁺/1⁻ excluded @ more than 99.99% CL