

Towards Nb₃Sn accelerator magnets, challenges & solutions, history & forecast

Shlomo Caspi

Superconducting Magnet Group Lawrence Berkeley National Laboratory June 11, 2013

Programs and institutions

What have we learned

What is the forecast

- LARP (Hi-Lumi Quadrupoles) BNL, FNAL, LBNL, CERN
- FRESCA-2 (Dipole) CEA, CERN
- \odot 11T (Hi-Lumi MBHSP Dipole) FNAL, CERN

High Field Base Programs

○ BNL/FNAL/LBNL/TAMU — HTS demonstration, Solenoids

Nb₃Sn, Nb₃Al, Bi-2212 cables

Nb₃Sn, Bi-2212 coils, 20T dipoles for Hi-Energy

○ CERN/CEA – Nb₃Sn, HTS conductors, coils, magnet technology

 \bigcirc KEK – Nb₃Al racetracks

Brittle coils

Accelerators, Superconductors, magnets

Superconducting Accelerator Magnets

	Differe cons	Superconducting Recelerator Mugnets		
•	Delicate assembly	Accelerators	Superconductors	Magnets
•	Bore size	Very high field	$Nb_{3}Sn + HTS + NbTi$	Cosine-Theta
•	Coil stress	e.g. Hi-Energy	Nb ₃ Sn	Stress management Stress interception
•	Structure stress Protection			
• Pr		High field e.g. Hi-Luminosity	Nb ₃ Sn	Cosine-Theta Common-Coil Block Block + stress management
	E IC	SSC and LHC	NbTi	Cosine-Theta
		Tevatron	NbTi	Cosine-Theta
	0			

Nb3Sn High field magnets

Nb3Sn High field magnets

Progress in Nb₃Sn J_c

<u>Nb₃Sn</u> 3000 A/mm2 at 12T 4.2K <u>NbTi</u> 3000 A/mm2 at 5T 4.2K

Nb3Sn Dipoles – An historical perspective: 1979-2013

Short-Sample

EuCARD'13 10-14 June 2013 CERN

S. Caspi

- 15T accelerator magnets have reached a stress limit (150-200MPa)
- The result is an unpredictable **plateau** above 80% of short-sample
- Replacing individual coils can be used to raise the plateau (LARP)
- Key and bladder technology delicate assembly, applied pre-stress
- The LHC High-Energy upgrade (20T) will require a "new" approach

- The LHC High-Energy upgrade (20T) will need a "new" approach
- Consider an internal structure (in addition to an external one)
 Include structural elements within the coil
- Intercept Lorentz forces of individual turns or small blocks
 At 20T Lorentz stress in individual turns is 30/100MPa (tangential/radial)

Example- 18T dipole with internal structure

With stress interception tangential stress is < 25MPa **Without stress interception** mid-plane stress is 200-700MPa

EuCARD'13 10-14 June 2013 CERN

.....

Azimuthal Stress in a 18T CCT configuration

Conductor -80 to 80 MPa

internal structure -800 to 300 MPa

EuCARD'13 10-14 June 2013 CERN

Unique turns distribution

 $J_z \sim \cos \theta$

*D.I. Meyer and R. Flasck "A new configuration for a dipole magnet for use in high energy physics application", Nucl. Instr.and Methods 80, pp. 339-341, 1970.)

Example – 18T

EuCARD'13 10-14 June 2013 CERN

A NbTi model - CCT1

- 1. Test a 2 layer NbTi dipole 50mm clear bore, 2.7T
 - Bladder technology
 - Aluminum spars and outer shell
 - Evaluate manufacturing, test magnet performance

• Accelerator magnets above 15T will require a **new magnet type**

How do we get there:

- Intercepting tangential Lorentz forces using an internal structure
 - minimize coil pre-stress
 - Pre-stress the structure not the coil
- Intercepting radial Lorentz forces using in addition an external structure
- Reducing stress will <u>reduce magnet training</u>
- Grading and large bore not a stress limit
- Technology compatible with HTS conductor