bending and focusing with plasmas and crystals potential and challenges

Frank Zimmermann

EuCARD2013, 11 June 2013

outline

- plasmas
- plasma lenses
- plasma wiggler
- plasma dipole
- crystals
- crystal channeling \& reflection
- leptons in crystals
- crystal accelerators
- crystalline beams

plasma focusing: plasma lens

- proposed as final focusing element for future high energy electron-positron colliders
- P. Chen, 1987
- early experiments with e^{-}at low energy (50 MeV)
- J. Rosenzweig, H, Nakanishi etc, 1990, 1991
- SLAC FFTB experiment (2001): focusing of 28.5 $\mathbf{G e V} e^{+}$beam using plasma formed by ionizing a 3-mm N_{2} gas jet; simultaneous focusing in both transverse dimensions
- effective focusing strength: $10^{6} \mathrm{~T} / \mathrm{m}$

plasma lens @ FFTB (2001)

plasma betatron wiggler: FFTB (2001)

 $n=1.7 \times 10^{14} \mathrm{~cm}^{-3}$: focusing force $5 \times 10^{6} \mathrm{~T} / \mathrm{m}$ shrinking beam size from $40 \mu \mathrm{~m}$ to $<5 \mu \mathrm{~m}$

S. Wang et al, Phys. Rev. Letters, 88, 13 (2002); also see M. Litos, S. Corde, SLAC-PUB-15215 (2012)

plasma bending: FFTB (2000)

Collective Refraction of a Beam of Electrons at a Plasma-Gas Interface

Nature 411, 43 (3 May 2001) collective response of the plasma produces a deflection of the electron beam of the order of one millirad

1.9×10^{10} electrons at 28.5 GeV in a Gaussian bunch of length $\sigma_{z}=0.7 \mathrm{~mm}$ and spot size $\sigma_{x}^{\sim} \sigma_{y}^{\sim} \sim 40 \mu \mathrm{~m}$

plasma bending at FFTB

Cerenkov images of e^{-}beam showing refraction of a portion of the beam with the plasma (i.e., laser on) \& PIC simulation

Experiment

PIC Simulation
P. Muggli,
T. Katsouleas, et al

plasma bending at FFTB

Measured e- beam deflection θ versus angle ϕ between laser and ebeam/ Solid curve is an analytical model prediction. The bunch length \& plasma density were 0.7 mm and $1 \times 10^{14} \mathrm{~cm}^{-3}\left(\lambda_{\mathrm{p}}^{\sim} \mathrm{mm}^{\sim} r_{c}^{\sim} 0.2 \mathrm{~mm}\right.$?)

from plasmas to crystals !?

maximum field in a plasma
$\mathrm{G} \approx 100 \mathrm{GV} / \mathrm{m}\left(n_{0}\left[10^{18} \mathrm{~cm}^{-3}\right]\right)^{1 / 2}$;

$$
n_{0} \approx 10^{17}-10^{18} \mathrm{~cm}^{-3}
$$

maximum field in a crystal
$\mathrm{G} \approx 10 \mathrm{TV} / \mathrm{m}\left(n_{0}\left[10^{22} \mathrm{~cm}^{-3}\right]\right)^{1 / 2}$;

$$
n_{0} \approx 10^{22}-10^{23} \mathrm{~cm}^{-3}
$$

crystals are also more regular and could be cooled \rightarrow less beam interaction with nuclei, etc.

crystals - world's strongest "magnets

crystal focusing strength $\phi^{\sim} 20-60 \mathrm{eV} / \AA^{2}$
$B_{\max } \approx 2000 \mathrm{~T}$

$$
\lambda=2 \pi \beta=2 \pi(E / \phi)^{1 / 2}
$$

crystal extraction from stored proton/ion beam

circulating proton beam

Dubna, Protvino, CERN SPS,
Tevatron
crystalline planes
since 1978 crystals are used for extracting high-energy protons or ions from storage rings; can they also be used for a circular collider?!
channeling condition: angle of incidence < Lindhard critical angle $\sim 5 \mu \mathrm{rad}(Z / p[\mathrm{TeV} / c])^{1 / 2}$
thermal vibrations, discreteness of lattice, electrons \rightarrow dechanneling (exponential decrease of channeled protons)
dechanneling length $L_{0} \sim 0.9 \mathrm{~m} p[\mathrm{TeV} / \mathrm{c}]$
cooling of crystal increases L_{0}
minimum bending radius for channeling $R_{c} \sim 0.4 p[T e V / c]$ meter

crystal extraction experiment UA9 at SPS (2009)

- Nuclear loss rate (including diffractive) strongly depressed

profile of "beam" deflected by crystal

staging of crystal deflectors

W. Scandale et al, Observation of Multiple Volume Reflection of Ultrarelativistic Protons by a Sequence of Several Bent Silicon Crystals, Phys.Rev.Lett. 102 (2009) 084801

crystal channeling efficiency

for single crystal traversal: present deflection efficiency >0.8-0.9 t.b.c.w. 1990's : 0.1-0.2
gain in deflection probability over last decades:

- now short crystals bent with constant curvature (anticlastic bending); crystal length in the 1990's was 5 cm or more and now it is 5 mm or less
multi-reflection / multi-strip crystal - drawbacks:

1. difficult to produce a multi-crystal with coherent reflections (alignment imperfections)
2. for high energy the multi-crystal length should be large

- large production of diffractive protons!

3. larger radiation damage of the crystal (larger ionization energy deposition again because of longer paths) w. scandale

radiation damping in ideal crystal

transverse radiation damping

- independent of particle energy!
no quantum excitation
decay to transverse ground state minimum beam emittance: $\gamma \varepsilon_{\text {min }}=\hbar / 2 \mathrm{mc}$
limited only by the uncertainty principle particle can be accelerated along focusing channel in its ground state without any energy loss
Z.Huang, P.Chen, R.D.Ruth, Radiation reaction in a continuous focusing channel, Phys.Rev.Lett. 74 (1995) 1759-1762

crystal accelerators

acceleration in crystal channels
$\mathrm{G} \approx 10 \mathrm{TV} / \mathrm{m}\left(n_{0}\left[10^{22} \mathrm{~cm}^{-3}\right]\right)^{1 / 2} ; n_{0} \approx 10^{22}-10^{23} \mathrm{~cm}^{-3}$ driven by x-ray laser now/soon available!

LCLS, Spring-8, XFEL, SwissFEL ...
max. energy set by radiation emission due to betatron oscillations between crystal planes, excited by multiple scattering off channel e^{-} $\mathbb{E}_{\max } \approx 300 \mathrm{GeV}$ for $e^{-} 10^{4} \mathrm{TeV} \mu, 10^{6} \mathrm{TeV}$ for p ?!

Chen \& Noble 1997; Dodin \& Fisch 2008; Shiltsev '12
10 TV/m - disposable crystal accelerator or $0.1 \mathrm{TV} / \mathrm{m}$ - reusable crystal accelerator side injection of x-ray pulses using long fibers

$e^{ \pm}$may soon run out of steam in the

 high-gradient world! \rightarrow need to change particle type linear X-ray crystal μ collider

crystalline beams

e-cooled p beam at BINP NAP-M, 1980

Schottky noise power vs number of particles in the beam (N)

$$
\begin{gathered}
\sigma^{2}=\frac{\sigma_{0}^{2}}{1-N / N_{t h}} \\
\sigma_{0}=1.4 \times 10^{-6} \\
N_{t h}=1.2 \times 10^{8}
\end{gathered}
$$

E.N. Dementiev et al., Sov. J. Tech. Phys. 50 (1980) 1717.
V.V. Parkhomchuk and D.V.

Pestrikov, Sov. J. Tech. Phys. 50 (1980) 1411.
D. Pestrikov, NIM A 379, 1996

theoretical studies:

 constant gradient rings, alternating focusing, effect of bending-magnets shear... :A. Rahman and J.P. Schiffer, Phys. Rev. Letts. 57, 1133 (1986); R.W. Hasse and J.P. Schiffer Annals, of Physics 203, 419 (1990). J. Wei, T.P. Li, and A. Sessler, Phys. Rev. Letts. 73, 3089 (1994).

increasing beam density:

1-D crystal \rightarrow 2-D crystal \rightarrow 3-D crystal

molecular dynamics simulations

projection onto $x-y$ plane with strong continuous cooling

experiments on crystalline beams

J. S. Hangst et al., Phys. Rev. Letts. 67, 1238 (1991).

BINP NAP-M, e-cooling
TSR Heidelberg, laser cooling, < 1 K ASTRID Arhus, laser cooling Laser , ~mK

PALLAS, LMU Munich

fluorescence int. I [arb.]

U. Schramm et al, PRE 66 (2002)
higher line density
lower line density

colliding crystalline beams

possible long-term strategy

(CERN implementation)
TLEP (80-100 km, $e^{+} e^{-}$, up to ~350 GeV c.m.)

VHE-LHC (pp, up to 100 TeV c.m.)
\& $e^{ \pm}(120 \mathrm{GeV})-p(7,16 \& 50 \mathrm{TeV})$ collisions ([(V)HE-]TLHeC) ≥ 50 years of $e^{+} e^{-}, p p, e p / A$ physics at highest energies 100 TeV pp collider may not be enough ?!? (D. Schulte)

possible longer-term strategy

 (CERN implementation)TLEP (80-100 km, $e^{+} e^{-}$, up to ~350 GeV c.m.)
LHC (26.7 km)
SPS (6.9 km)

VHE-LHC
(pp, up to
100 TeV c.m.)

CCC, >1 PeV

$\& e^{ \pm}(120 \mathrm{GeV})-p(7,16 \& 50 \mathrm{TeV})$ collisions ([(V)HE-]TLHeC)
≥ 50 years of $e^{+} e^{-}, p p, e p / A$ physics at highest energies followed by >1 PeV circular crystal collider (CCC)?!?

circular crystal collider?

tunnel mostly empty

a dream or our future?

energy ramp using induction acceleration?

conclusions

- plasmas \& crystals demonstrate large focusing forces, $10^{3}-10^{4} \mathrm{x}$ stronger than SC quadrupoles
- they could also provide large dipole field; so far bending fields of 5-100 T demonstrated
- beam-matter interaction \& efficiency are the critical issues for circular ring applications
- straightforward use in single-pass systems
- incentive to strengthen crystal R\&D!

... and how about plasma.crystals?

many thanks for youratention!

Sandia Labs

