DE LA RECHERCHE À L'INDUSTRIE

THIN FILMS TECHNOLOGIES FOR SRF

EUCARD2 WP12.2 THIN FILMS PROSPECTIVES

C. Z. ANTOINE, CEA, Irfu, SACM, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette Cedex, France

www.cea.fr

Today's thin films (vs bulk Niobium)

SRF limits

Superheating

Higher TC materials

Vortex nucleation

Multilayers

Thin films developments

Characterization issues Line of sight techniques

Chemical techniques

Focus on multilayers

Characterization issues

Conclusion and perspectives

TODAYS'S THIN FILMS (vs bulk niobium)

DE LA RECHERCHE À L'INDUSTR

THIN FILMS 1

Nb : λ ~50 nm => only a few 100s nm of SC necessary

(the remaining thickness= mechanical support only) => Make thin films !

- Advantages
 - Thermal stability (substrate cavity = copper)
 - Cost
 - Innovative materials
 - Optimization of R_{BCS} possible

Disadvantages

- Fabrication and surface preparation (at least) as difficult as for bulk
- Superconductivity very sensitive to crystalline quality (lower in thin films for now)
- Deposition of innovative (compound) materials is very difficult

BULK NIOBIUM MONOPOLY

Bulk Niobium:

— grains \varnothing >~ 100 µm to mms, good crystallographic quality

Niobium ~1-5 µm/Copper :

- Ø <~ 100 nm, many crystallographic defects, grain boundaries...
- good low field performances (thermal configuration and cost)

It is changing !!!: New emerging thin films techniques

NIOBIUM CAVITIES

Practical issues

- we do not know the exact origin of the limitation: *classical theory* (BCS) is not enough to fully predict RF observations,

- reproducibility not good

RF superconductivity: a surface phenomenon

- λ_{I} = field penetration depth
 - = where thermal dissipation occurs

Nb : ~ **50 nm**

Typical performances

(CEA/Saclay- CARE-SRF project Cavity):

40-45 MV/m (~170MT) !

Niobium: bulk, electropolished

and **baked**

...and cleanroom assembled

DE LA RECHERCHE À L'INDUSTRI

HAS NIOBIUM REACHED ITS ULTIMATE LIMITS?

Cavity 1DE3 : EP @ Saclay T- map @ DESY Film : curtesy A. Gössel + D. Reschke (DESY, 2008)

SRF LIMITS

SRF LIMITS : BACK TO BASICS

- Q₀ (x1/Thermal dissipations)
 - depends on surface resistance ... which depends on Tc
 - Higher Tc => higher Q_0 => lower operation cost

Ultimate limit in E_{acc}: when the SC becomes normal conducting !

- Transition: when T and/or B个
- Cavity is not tuned anymore
- At $\omega < 3$ GHz: we are limited by B^{RF} !!!

SRF LIMITS: TRANSITION FIELD

^{*} H. Padamsee, et al, "RF superconductivity for accelerators". 1998: J. Willey & son. ** Gurevich, Brandt, Smethna...

HIGHER T_C MATERIALS

G. Muller, et al. in EPAC 96. 1996. Sitges, Spain

AFTER NIOBIUM: MULTILAYERS

(Proposed by A.Gurevich, 2006):

- Keep niobium but shield its surface from RF field to prevent vortex penetration
- Use nanometric films (w. d < λ) of higher Tc SC :

Example :

```
NbN , \xi = 5 nm, \lambda = 200 nm
```

20 nm film => $H_{C1} = 0,02 T$ X = 200 x 200

(similar improvement expected with MgB₂ or Nb₃Sn)

- high H_{C1} => no transition, no vortex in the layer
- applied field is damped by each layer
- insulating layer prevents Josephson coupling between layers
- applied field, i.e. accelerating field can be increased without high field dissipation

• thin film w. high $T_C => low R_{BCS} => higher Q_0$

Take a Nb cavity...

I-S-I-S-...

Nb

deposit composite nanometric SC (multilayers) inside Nb / insulator/ superconductor / insulator /superconductor...

(SC with higher Tc than Nb)

Increasing of E_{acc} AND Q₀ !!!

Superheating field vs Vortex nucleation

- Superheating field limitation observed principally
 - close toT_C
 - "perfect material" (few surface defects)
 - and/or short pulses
- In real life :
 - early/fast penetration of vortex possible @ surface defects
 - penetration of vortex seem faster @ low temperature (why !? λ small ?)
 - Why is Nb the best for SRF?
 - because we master its quality ? Then good Nb₃Sn would be even better
 - because of its high H_{C1}? Then only ML can do better....
 - More theoretical and exp. work needed

THIN FILMS DEVELOPMENTS

There are two categories of films

Films which are intrinsically "films"

- Thin, small grains, under stress

Films: Many techniques, not possible mention all

- Problems: defects & microstructure, impurities, surface state
- Examples: magnetron sputtered films on oxidized copper

The general trend is to move towards bulk-like films :

- Dense, large grain material, e.g.:
 - high-energy deposition techniques
 - Thermal diffusion films
 - CVD, ALD (chemical techniques)

CHARACTERIZATION ISSUES

possible mention all Characterization must be done on samples (flat, small)

Use existing deposition set-ups to find the proper technique

- Optimization of the material deposition conditions
- Classical characterization (T_c, composition, crystal structure...)
- Specific SRF properties :
 - Complete RF characterization not possible on samples
 - RF surface resistance $(Q_0) =>$ "sample cavities"
 - Maximum achievable field (E_{acc}) => local magnetometry

Then develop a deposition set-up dedicated to cavities

Films: Many techniques, not

principle

"SAMPLE CAVITY" @ HZB

INPUT PROBE PORT

cryostat

Goal

DE LA RECHERCHE À L'INDUSTR

TE011 CAVITY AT IPNO

Claire Antoine EUCARD'13 | PAGE 19

LOCAL MAGNETOMETRY @ SACLAY

3 MAJORS DEPOSITION TECHNIQUES

High-energy deposition techniques

- line of sight techniques
- issues: getting uniform thickness/structure
- limited in complex geometry

Thermal diffusion films

- limited compositions available
- non uniform composition

Chemical techniques CVD, ALD

- conformational even in complex shape
- very quick for large surfaces
- issues: get the right crystal structure

PHYSICAL DEPOSITION TECHNIQUES: SPUTTERED FILMS

Generalized Structure Zone Diagram

(from A. Anders)

DE LA RECHERCHE À L'INDUSTRI

HPIMS @ CERN: bulk-like thin films

- Self sputtering of the target => less Ar+/Kr+ in the layer
- Ions reach the layer @ higher energy => less crystalline defects

Discharge Current Material density Crystalline quality

2013: activity started, collaboration with Sheffield University

Cavity

athode

1.3 GHZ DEPOSITED BY HPIMS @ CERN

- Similar as bulk Nb @ 4.5K, much less good @ 1.8K
- Bulk-like, high RRR + copper substrate =>
 - better thermal stability
 - lower cost

THERMAL DIFFUSION

■ Nb₃Sn developments @CERN

- Development of a thermal deposition set up.
- Comparison between :
 - thermal diffusion of tin into niobium
 - co-deposition by sputtering of Nb and Sn followed by a thermal reaction
- in 2013: design of furnace under study

Niobium cavity

CHEMICAL DEPOSITION TECHNIQUES: CVD, ALD

CVD : chemical vapor deposition

ALD atomic layer deposition

Advantage : conformal techniques,

Can apply to large complex shapes

- CVD : medium temperature pathway
 - Precursors well known (mineral, e.g. NbCl₃...)
 - SC like NbN, NbTiN... have already done
 - Very sensitive to substrate surface state
 - Main difficulty: prepare multilayers structures

ALD : moderate temperature

- Better adapted to copper substrates
- Organometallic precursors => high reactivity
- Issue: get the right crystal structure
- Fabrication of SC like NbN not well known, but close compounds like TaN, TiN... well known
- ∃ known (chemical) strategies for the choice of precursors
- ∃ advanced (chemical) software that can model thermodynamic + hydrodynamic environment for reaction optimization

Bulk like ? => find the proper thermodynamic conditions

DE LA RECHERCHE À L'INDUSTRI

FOCUS ON ALD

Layer ~ 100nm

High conformability

Example

- Tantalum nitride (Ta₃N₅):
 - PDMAT (Ta(N(CH₃)₂)₅) et NH₃
- Tantalum oxide (Ta₂O₅) :
 - TaEtO (Ta(O(C_2H_5))₅) et H_2O
- Niobium nitride (NbN) :
 - NbCl₃ et Zn ou Hydrazine (N₂H₄), but high Tp°
 - Organometallic precursors under study

Extract from http://www.youtube.com/watch?feature=player_detailpage&v=XMda8TXLIFk

- superconducting heterostructures
- CVD and ALD of oxides & nitrides (TiN, TaN, AIN, YBCO/PBCO,.....)
- Need to develop a specific ALD reactor for multilayer NbN/insulator/NbN coatings
- Need to develop a suitable coordination chemistry for the ALD precursors (+ plasma ALD to help)
- Extensive sample characterization
- Process scaling up to cavity deposition will be performed with specific simulation tools.

FOCUS ON MULTILAYERS

FIRST EXP. RESULTS ON HIGH QUALITY MODEL SAMPLES

Choice of NbN:

- ML structure = close to Josephson junction preparation (SC/insulator compatibility)
- Use of asserted techniques for superconducting electronics circuits preparation:
- Magnetron sputtering Flat monocrystalline substrates ~ 25 nm NbN ~ 15 nm insulator (MgO) 250 nm Nb "bulk" Reference sample R, Tc = 8.9 K Test sample SL Monocrystalline sapphire Tc = 16.37 K~ 25 nm NbN x 4 14 nm insulator (MgO) 500 nm Nb "bulk" Monocrystalline sapphire Test sample ML Tc = 15.1 K

DE LA RECHERCHE À L'INDUSTRI

MULTILAYERS' H_{C1}

ML sample : 250 nm Nb + (14 nm MgO + 25 nm NbN) x 4 Multilayer tested for the first time $B_{C1} > 55$ mT @ 8K !

```
DE LA RECHERCHE À L'INDUSTRI
```


1st TEST RF @ 3,88 GHZ (4 25nm NbnN LAYERS)

- Comparison is done with a high performance 1.3 GHz Nb cavity (scaling in ω^2)
- Indium gasket presents some defects measured with thermometric map => extra RF losses
- Residual resistance comes from NbN + bulk Nb substrate + indium gasket. Further investigations needed.

CONCLUSION AND PERSPECTIVES

CONCLUSIONS AND PERSPECTIVES

- Superconducting cavities are dominated by their surface quality (Niobium AND other SC !)
- Niobium is close to its ultimate limits
- H_{SH} difficult to reach in real "accelerating cavities" (low T, large scale cavity fabrication, surface defects,...)
- ML structures seem to be a promising way to go beyond Nb for accelerator cavities
- Renewed activity on bulk-like Nb films (cost issues) and high H_{SH} SC e.g. Nb₃Sn or NbN (higher performances)
- Look for higher Q_0 , not only E_{acc} !
- WE ARE ON THE EVE OF A TECHNOLOGICAL REVOLUTION FOR SRF CAVITIES !

STRUCTURE OF THE TASK 12.2 (EUCARD2)

Niobium on copper (µm)

- After ~ 20 years stagnation : new revolutionary deposition techniques
- Great expectations in cost reduction
- No improved performances/ bulk Nb
- Higher Tc material (µm)
 - Based on superheating model.
 - Higher field and lower Q₀ expected
- Higher Tc material (nm), multilayer
 - Based on trapped vortices model (Gurevich)
 - Higher field and lower Q0 expected
 - Recent experimental evidences
 - Specific characterization tools needed
 - Better understanding of SRF physics needed

MMM SRF2013 16th International conference on RF Superconductivity

September 23-27, 2013 Cité Universitaire Internationale, PARIS

cea

Irfu

Tutorials : September 19-21, 2013 **GANIL, CAEN (France)**

INTERNATIONAL PROGRAM COMMITTEE

Claire ANTOINE, CEA-Saclay Sébastien BOUSSON, CNRS/IN2P3/IPNO Eiji KAKO, KEK Michael KELLY, ANL Charles REECE, JAB Robert KEPHART, FNAL IOBLOCH, HZB, IPC Chair Tsuyoshi TAJIMA, LANL Jens KNOBLOCH, HZB, IPC Chair Matthias LIEPE, Cornell University

LOCAL ORGANIZING COMMITTEE

SELEIL

Claire ANTOINE, CEA-Saclay, Chair Sébastien BOUSSON, CNRS/IN2P3/IPNO, Co-Chair François KIRCHER, CEA-Saclay Robin FERDINAND, GANIL Marc LOUVET, SOLEIL Valérie FROIS, CNRS/IN2P3/IPNO Yolanda GOMEZ MARTINEZ, LPSC UJF-CNRS/IN2P3-INPG Guillaume MARTINET, CNRS/IN2P3/IPNO Walid KAABI, CNRS/IN2P3/LAL Ketel TURZO, GANIL

Photography © Jeremy BAMAS

THANK YOU FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives	DSM
Centre de Saclay 91191 Gif-sur-Yvette Cedex	Irfu
T. +33 (0)1 69 08 73 28 F. +33 (0)1 69 08 64 42	SACM
	LIDC2

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

SPARES

COAXIAL ENERGETIC DEPOSITION (CED)

b) Mesh a-plane sapp. Top 0 U MgO(100) R C E Borosilicate Slow Macros Nb ions, with T > Tm E ~ 100 eV

Cathodic arc plasma.

Record

- 585
- Ions Energy 60-120 eV
- Arc source is scalable for large scale cavity coatings
- UHV and clean walls important

Nb films grown by Jlab and AASC Almeda Applied Science Corporation. Balk like RRR values

Coaxial Energetic Deposition (CED[™])

Ch. Reece; JLab

DE LA RECHERCHE À L'INDUSTR

Nb₃Sn FAILURE : DUE TO VORTICES ?

- Nb : the best because of its high H_{C1}?
- Nevertheless it is interesting to master Nb₃Sn for SRF applications => on going activities @ Cornell, (re-) starting @ CERN