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TODAYS’S THIN FILMS
(vs bulk niobium)
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THIN FILMS 1

Nb : A~50 nm => only a few 100s nm of SC necessary
(the remaining thickness= mechanical support only) => Make thin films !

I Advantages

== 1 hermal stability (substrate cavity = copper)
m= COSt

== INNOvative materials

== Optimization of Rz-5 possible

I Disadvantages

== Fabrication and surface preparation (at least) as difficult as for bulk
== Superconductivity very sensitive to crystalline quality (lower in thin films for now)

== Deposition of innovative (compound) materials is very difficult
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BULK NIOBIUM MONOPOLY

B Bulk Niobium:
= grains &>~ 100 um to mms, good crystallographic quality

B Niobium ~1-5 um/Copper :
= & <~ 100 nm, many crystallographic defects, grain boundaries...
= good low field performances (thermal configuration and cost)
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B Itis changing !'l: New emerging thin films techniques
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NIOBIUM CAVITIES

C103E5T=1.7K

0 5 10 15 20 25 30 35 40 45
Eacc (MV/m)

Practical issues

- we do not know the exact origin of the limitation: classical theory
(BCS) is not enough to fully predict RF observations,

- reproducibility not good
RF superconductivity: a surface phenomenon

KL = field penetration depth Nb: ~50 nm
= where thermal dissipation occurs '
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Typical performances

T (CEA/Saclay- CARE-SRF project Cavity ):
e L A
o i ""r:m..,_ \ 40-45 MV/m (~170MT) !
s Qe Niobium: bulk, electropolished
16409 and baked

||
T A o | X5

...and cleanroom assembled
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HAS NIOBIUM REACHED ITS ULTIMATE LIMITS?

Cavity 1DE3:
EP @ Saclay

T- map @ DESY
Film : curtesy

A. Gossel +

D. Reschke
(DESY, 2008)
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SRF LIMITS
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SRF LIMITS : BACK TO BASICS

B Q, (x<1l/Thermal dissipations)
== depends on surface resistance ... which depends on Tc
== Higher Tc => higher Q,=> lower operation cost

B Ultimate limit in E_..: when the SC becomes normal conducting !
== Transition : when T and/or B
== Cavity is not tuned anymore

B At o <3 GHz: we are limited by BRF 111

Nb : Limits @ 2 K, 1.3 GHz :

E..c ~ 45 MV/m (+ 5 MV/m ?)

Q,~ 100-10™
QO Jc ~1010-1012 A/m?2 (105-108 A/cm?)
(Tesla Shape : H./E,.. ~ 42 Oe/(MV/m))

acc
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SRF LIMITS: TRANSITION FIELD

B What is the proper transition field in RF? ; ' 'N'b' I
25 | |
4,0 : N — ; fmal state
g 3.0+ In TYPE [ —»=—TYPE I 20 i i
= o
i 20F i I
g ] H 15 Mixed state
N SUFERAEATED STATE — . :
T 10 y L ] c i :
M09 LEGEND: ht vs x ot 90 MHz /H“- r ! !
E o sl e T k) Esonottion g | : | Superheated
- o6 <— Absolute Error Bar £ i i State
Y i 02 03 04 05 0607 OiBOi‘BLJO T MGISSH?Y i H
“ 0.5 state! ! ¢l
. . ! ' H
B Superheating field ? Type || ; S rypell
== NOrmal zone nucleation ~10° s N
- RF _._10-9 S * 0 0.4 0.6 1.2 1.6 2.0
BUT GL parameter x (= A/€)

- I [ -~ 13 g **
1! vortex penetration ~101°s He, ~1,2.He pour x~1

* H. Padamsee, et al, "RF superconductivity for accelerators". 1998: J. Willey & son.
** Gurevich, Brandt, Smethna...
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HIGHER T-. MATERIALS

- Operation E... : expected limit (MV/m)
Materiau temperature (K) forH, o /Eqee ;Al,O\Oe/(MV/m) HSH ~112-Hc pour x ~1
&
Nb 2 / 55 \
Hey ~0,75.H- pour x>>1
Tc1 Nb 4 49 /" s cP
et Nb,Sn 4 95 H
He 1t MgB, 4 80 _—
MgB, 4 52
g
He Nb3Sn 0.03T (H°¢;=0.05T) He Nb 0.12 T (H°¢,=0.17 T) ta
1E+12 coolant
1Ee11 I Dissipation due to early vortex penetration ?
B Recent theoretical work :

8 1E+10

1E+09

1E+08

0 10

20 30 40 50 60 70

Epk (MV/m)

1.5 GHz Nb;8n cavity (Wuppertal, 1985)
1.3 GHz Nb cavity (Saclay, 1999)

G. Muller, et al. in EPAC 96. 1996. Sitges, Spain
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Vortices : normal area ~ some nm can
cause “hot spots” ~ 1 cm (comparable to

what is observed on cavities)

At high field vortices => thermal
dissipation => Quench

Nb is the best because of its high He,?
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AFTER NIOBIUM: MULTILAYERS

(Proposed by A.Gurevich, 2006) :

B Keep niobium but shield its surface from RF field to prevent vortex
penetration

B Use nanometric films (w. d < A) of higher Tc SC :
=> H., enhancement

B Example:

NBbN , & =5 nm, 1 =200 nm (similar improvement
He, =0,02T ) 200 Eﬁpgcr:‘t)ed with MgB,, or
20 nmfilm =>  Hg=42T ¥ % ’
Nb I-S-I-S- 4 high H... = . i the |
Happlied - Igh He; => no transition, no vortex in the layer
. = applied field is damped by each layer
H = Insulating layer prevents Josephson coupling between
Nb Caviy's layers
Outside wal memal = applied field, i.e. accelerating field can be increased
« < i without high field dissipation
_Na = thin film w. high T => low Rgzc5 => higher Q,
Hyp =Hapn ©
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HIGH TC NANOMETRIC SC FILMS :

LOW Rg, HIGH Hc,

IE  Take a Nb cavity...

I deposit composite nanometric SC (multilayers) inside
Nb / insulator/ superconductor / insulator /superconductor...

(SC with higher Tc than Nb)

Magnetic field B (mT)

Nb [-S-I-S-... 80 160

1E+12

1E+11 ﬂ
1E+09
0 20 40 60

Quality coefficient Q,

Accelerating Field E,.. (MV/m)

Increasing of E_,.. AND Q, !!!
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PHYSICS OF SRF LIMITATIONS

Superheating field vs Vortex nucleation

Nb<50 MV/m
+ magn. screening

B Superheating field limitation observed principally

I close toT,

B “perfect material” (few surface defects)

I and/or short pulses
®  Inreal life :

I early/fast penetration of vortex possible @ surface defects

I penetration of vortex seem faster @ low temperature (why !? A small ?)
B Why is Nb the best for SRF ?

BY  because we master its quality ? Then good Nb;Sn would be even
better

B because of its high Hs;? Then only ML can do better....
B More theoretical and exp. work needed

Nb~ 55 MV/m
Nb,Sn ~ 95 MV/m
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THIN FILMS DEVELOPMENTS
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THIN FILMS

There are two categories of films

Filmsg. M
B Films which are intrinsically “films” techniq e ny
. . pOSSibIe S, Not
= Thin, small grains, under stress ntion 4,

== Problems: defects & microstructure, impurities, surface state

== EXamples: magnetron sputtered films on oxidized copper

B The general trend is to move towards bulk-like films :

== Dense, large grain material, e.g.:
== Nigh-energy deposition techniques
== Thermal diffusion films
== CVD, ALD (chemical techniques)
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CHARACTERIZATION ISSUES

Characterization must be done on samples (flat, small)
Bl Use existing deposition set-ups to find the proper technique
== Optimization of the material deposition conditions
= Classical characterization (T, composition, crystal structure...)
== Specific SRF properties :
== Complete RF characterization not possible on samples
== RF surface resistance (Q,) =>"sample cavities”

== Maximum achievable field (E._) => local magnetometry

acc

B Then develop a deposition set-up dedicated to cavities
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»OAMPLE CAVITY" @ HZB

B Build an optimized thin films RF testing resonator =
== Magnet field generation based on the CERN quadrupole |
principle
== Thermometric measurement of Rs vs B
== Operating frequencies: N
= 433 MHz (70cm band, cheap components) REsONATOR
= 866 MHz and P
= 1.3 GHz (relevance for TESLA) ::< %::
B Optimization : ] i
o pmny
== Optimize external coupling PART 2 RESONATOR
== Improve resolution of surface resistance -_ N
== Modify thermometry chamber to accommodate samples L |
on wafers N \ YN
== Improve magnetic shielding ' f : ' N Tenssorers
" Goa TR P .
== INvestigate samples under external magnetic fields (flux L ' i | t;J
pinning behavior) mewoMe b ’ :WW?TM
== Provide high sample throughput by procuring dedicated tﬁw LP
cryostat L FEEDTHROUGH
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TEO11 CAVITY AT IPNO

Bulk Niobium
TEO11 cavity

RF couplers

3.88 GHz => Ryeg~ 9 X R (1.3 GHz)

Epoxy rod rounded by
bronze/Beryllium spring

1

Encapsulated carbon = Calibrating heater
thermometers

Thermometric
set-up

Back side of the sample
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LOCAL MAGNETOMETRY @ SACLAY

B E_.in cavities is limited because of BRF

Differential Locking
Amplifier

== |f B > B, : vortex start to enter the SC material
== Dissipation ™1
== Measure of B., =>limitin E, with good margin

= b,ycos (wt) applied in the coil
= below B, sample =perfect magnetic mirror

= temperature ramp Excitation/Detection
= third harmonic signal appears @ B, coil (small/sample)

QAT — ¢ i T L T3 B.,(f)

B (t)

irr

increasing |

03F _

increasing B

B.,(t) w right onset |
b} N

04 05 06 07 08 09 10 11
t =T/Tc

third harmonic signal'[fo[pqrious b0
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Cea 3 MAJORS DEPOSITION TECHNIQUES

B High-energy deposition techniques

== line of sight techniques

== iSsues: getting uniform thickness/structure
== limited in complex geometry
B Thermal diffusion films

== limited compositions available

== NON uniform composition
B Chemical techniques CVD, ALD

== conformational even in complex shape

== Very quick for large surfaces
== iSsues: get the right crystal structure e
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PHYSICAL DEPOSITION TECHNIQUES: SPUTTERED

st FILMS

Generalized Structure Zone Diagram (from A. Anders)

derived from Thornton’s diagram, 1974

recrystallized grain structure
zone 3

fine-grained,
nanocrystalline,
with preferred
orientation

At

region not
accessible

0.1

~

B .

porous, ul

tapered crystallites n k "ke ?~

separated by voids, densly packed 1 er getj Go to

tensile stress 3 :
fibrous grains

transition from tensile (low E*) to

compressive stress (high £*) line separating .-

net deposition

region of possible region not E* and net etching

low-temperature accessible
low-energy ion-assisted

film,
epitaxial growth dense film

reduction of deposition by sputtering

© Andre Anders, 2010 11

A. Anders, Thin Solid Films 518, 4087 (2010).
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‘J(_'atho;le

B High energy compared to sputtering

== Self sputtering of the target => less Ar+/Kr+ in the layer
== lons reach the layer @ higher energy => less crystalline defects

Discharge Current
Material density
Crystalline quality

2013: activity started, collaboration with Sheffield University
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1.3 GHZ DEPOSITED BY HPIMS @ CERN

B Similar as bulk Nb @ 4.5K, much
less good @ 1.8K

B Bulk-like, high RRR + copper
substrate =>

== better thermal stability

lower cost

10" R
— 45K
o _Bulk Nb [P TTTW
A T
-T-'_—'_“_"ﬁ.".""'"'A'-‘-*‘—é-hﬁ--.-l-_.-
10 - HPIMS Nb_.
10’ T T T
0 1 2 3 4
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THERMAL DIFFUSION

Furnace Sn vapor
B Nb,;Sn developments @CERN
== Development of a thermal deposition set up.
== Comparison between :
== thermal diffusion of tin into niobium
= CO-deposition by sputtering of Nb and Sn
followed by a thermal reaction
== 1IN 2013: design of furnace under study

Niobium cavity
1B+ | |
Y T
R ] 'i;‘l:i EY TN S —— e | 1.7K, 1.3 GHz
\ s
1E+10 A Il"a|L__.1
9 A ks
EY B =]
o -
\\ Q
Nb;Sn
1E+09 | — | A
] 2K, 15GHz | N
~
1E+08
0 200 400 600 800 1000 1200 1400

B (Oe) . .
2013-06-12 Claire Antoine EUCARD'13 | PAGE 25



CHEMICAL DEPOSITION TECHNIQUES:

CVD, ALD

CVD : chemical vapor deposition ALD atomic layer deposition

Advantage : conformal techniques,

Can apply to large complex shapes Buik like o -

B CVD: medium temperature pathway
== Precursors well known (mineral, e.g. NbCl;... )
== SC like NbN, NbTiN... have already done
== Very sensitive to substrate surface state

== Main difficulty: prepare multilayers structures

B ALD : moderate temperature
== Better adapted to copper substrates
== Organometallic precursors => high reactivity
== ISsue: get the right crystal structure
== Fabrication of SC like NbN not well known, but close compounds like TaN, TiN... well known

B I known (chemical) strategies for the choice of precursors

IE  Jadvanced (chemical) software that can model thermodynamic + hydrodynamic

environment for reaction optimization
2013-06-12 Claire Antoine EUCARD'13 | PAGE 26



FOCUS ON ALD

High conformability

Signal B = InLens Date :8 Sep 2009 INPG
Mixing = Off Time :9:56:51 CMTC

Example

B Tantalum nitride (TagNs):
= PDMAT (Ta(N(CH,),)) et NH,

B Tantalum oxide (Ta,Og) :
= TaEtO (Ta(O(C,H))s) et H,O

Layer ~ 100nm

B Niobium nitride (NbN) :
= NbCl; et Zn ou Hydrazine (N,H,), but high Tp°®

== Organometallic precursors under study
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ALD MOVIE

Extract from http://www.youtube.com/watch?feature=player detailpage&v=XMda8TXLIFk
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CVD/ALD @ GRENOBLE INP

B Long standing expertise of Grenoble INP on: s N

== SUperconducting heterostructures
== CVD and ALD of oxides & nitrides (TiN, TaN, AIN, YBCO/PBCO,......)

' Need to develop a specific ALD reactor for multilayer NoN/insulator/NbN
coatings

I  Need to develop a suitable coordination chemistry for the ALD precursors
(+ plasma ALD to help)

B  Extensive sample characterization
B Process scaling up to cavity deposition will be performed with specific

simulation tools.
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FOCUS ON MULTILAYERS
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DE LA ‘INDUSTRIE

FIRST EXP. RESULTS ON HIGH QUALITY MODEL

SAMPLES

¥ Choice of NbN:

B ML structure = close to Josephson junction preparation (SC/insulator compatibility)
B Use of asserted techniques for superconducting electronics circuits preparation:
== Magnetron sputtering

= Flat monocrystalline substrates

~25nm NbN —_

~ 15 nm insulator (MgO) el

Reference sample R, Tc =8.9K —

250 nm Nb “bulk”

Test sample SL

Monocrystalline sapphire Tc=16.37K

~ 25 nm NbN

14 nm insulator (MgO)

500 nm Nb “bulk”

Monocrystalline sapphire Test sample ML

Tc=15.1K

Collaboration with J.C. Villégier, CEA-Inac / Grenoble

2013-06-12
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MULTILAYERS’ H,

Accelerator cavities' operating range 5 { ~ 25 nm NbN
140 i : ,4 X 4 14 nm insulator
| e ML4 T (MgO)

| 500 nm Nb “bulk”
120 4 {~a-SL

ML4
Tc=15,1K

. . -v
Monocrystalline sapphire

1 —@— Nb Ref
100 — A\

N
B ~ 25 nm NbN —
-

= 80 ~ 15 nm insulator (MgO) g

£ ' 250 nm Nb “bulk” o

= . Monocrystalline sapphire Tc=16.37 K
T 60 “

~ 15 nm insulator (MgO) ~
250 nm Nb “bulk” /

Monocrystalline sapphire

15 20

ML sample : 250 nm Nb + (14 nm MgO + 25 nm NbN) x 4
Multilayer tested for the first time B, > 55 mT @ 8K'!
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Back side of the sample

needed.
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Rs (LOhm)

Rs = f(T)

Accelerator cavities'

operating range
A

@ Rs(ML4)

Rs(Nb) (scaling
inw2)

3.88 GHz =>
Rgcs~ 9 X R (1.3 GHZ)

T(K)

Comparison is done with a high performance 1.3 GHz Nb cavity (scaling in ®?)
Indium gasket presents some defects measured with thermometric map => extra RF losses
Residual resistance comes from NbN + bulk Nb substrate + indium gasket. Further investigations
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CONCLUSION AND PERSPECTIVES
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Cea CONCLUSIONS AND PERSPECTIVES

B Superconducting cavities are dominated by their surface quality
(Niobium AND other SC 1)

B Niobium is close to its ultimate limits

B Hgy, difficult to reach in real “accelerating cavities” (low T, large scale
cavity fabrication, surface defects,...)

B ML structures seem to be a promising way to go beyond Nb for
accelerator cavities

I Renewed activity on bulk-like Nb films (cost issues) and high Hg, SC
e.g. Nb;Sn or NbN (higher performances)

B¢ Look for higher Q,, notonly E_. !

B WE ARE ON THE EVE OF ATECHNOLOGICAL REVOLUTION FOR
SRF CAVITIES !
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C22 STRUCTURE OF THE TASK 12.2 (EUCARD2)

Niobium on copper (um)

== After ~ 20 years stagnation : new revolutionary deposition

techniques -
== (Great expectations in cost reduction
== NO improved performances/ bulk Nb

Higher Tc material (um) — .

== Based on superheating model.

== Higher field and lower Q, expected 8
Subtask

Higher Tc material (nm), multilayer - U

== Based on trapped vortices model (Gurevich)
== Higher field and lower QO expected
== Recent experimental evidences

Specific characterization tools needed }

Better understanding of SRF physics needed
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C2a COAXIAL ENERGETIC DEPOSITION (CED)

Substrate  RRR ) 0) v
ONONONONONONONONONONO —_—
- - Heated substrates * ) a-plane sa
Single crystal insulator Chnodgim = === === —————-Top o : o -2 e
MgO (100) 176 Loz vmmmma——————— T o - = MgO(100)
MgO (110) 424 ¢ e -
Mgo (111) 197 14 1 - : .- ¥ : Borosilicate
a-Al,O, 488 20, 20 & =
C_AI O 247 L ems . ) Slow Macros Nb ions,
273 ARC PULSE TRIGGER PULSE with T>Tm o 100ev
lar
Cularge 289
grains

Cathodic arc plasma.
Record 585

* lons Energy 60-120 eV
 Arc source is scalable for large scale cavity coatings
* UHV and clean walls important

Nb fimsgrown by Jiaband AASC AlmedaApplied
Science Corporation. Balk ike RRR values

Ch. Reece; JLab

Coaxial Eergetic Deposition
(CED™)



C22A Nb,Sn FAILURE : DUE TO VORTICES ?

- Hp Nb,Sn 0.03T (H°-;=0.05T) He Nb 0.12 T (H°¢,=0.17 T)
owg = L 1E+12 !
o | Nb,Sn
: |
g‘“"" — 1E+11 === = i Nb
w0 = % pooEl 8 aaldy = @ = Q m
2 2 =] « = a-g m 3
| \ F
No . ° a:ﬁ% - ? ° ISH 8 1E+10 A uﬂ‘tﬁ
\ “:';.'vng QUENCH
~ e
Coatin 1E+09 \‘ !
chambgr x ;
in UHV ’
furnace
1E+08
0 10 20 30 40 50 60 70
Epk (MV/m)
_——— 1.5 GHz Nb,;Sn cavity (Wuppertal, 1985)
\ aaaBoaa 1.3 GHz Nb cavity (Saclay, 1999)
NDb : the best because of its high H; ?
= i - Nevertheless it is interesting to master Nb,Sn for SRF
neator B B 8 applications => on going activities @ Cornell, (re-)
=0 starting @ CERN
2013-06-12
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