EuCARD² WP 10.2 HTS Conductor

EuCARD² Kick-off at CERN 14th June 2013

Task 2 - objectives

- Design prototype and produce HTS cables, in unit length (order of 50 m) and quantity (order of 5 UL) sufficient for coil winding (1 magnet per material option)
- Improve the performance of the two candidate HTS materials (BSCCO-2212 and YBCO), with targets suitable for a 5 T accelerator grade insert in a 15 T background magnet. Produce at least 10 kg of each material at target performance
- Characterize electrical and mechanical properties of the basic materials and cables. Assist material R&D through advanced analytical and imaging techniques

Task 2 – targets and metrics Wires/Tapes

parameter	units	targets
J _E (20 T, 4.2 K)	(A/mm^2)	600
J _E (15 T, 4.2 K)	(A/mm^2)	675
J _E (12 T, 4.2 K)	(A/mm^2)	800
σ (I _C) within a unit length	(%)	10
M(1.5 T, 10 mT/s)	(mT)	300 ⁽¹⁾
Range of $\sigma_{transverse}$	(MPa)	100
Range of $\epsilon_{longitudinal}$	(%)	±0.3
Unit length	(m)	100

⁽¹⁾ ball-park estimate, depends on the magnet design, to be fixed as a result of the magnet test

Task 2 – targets and metrics Cables

parameter	units	targets
I _C (20T, 4.2 K)	(kA)	10
Provisional width	(mm)	<i>10</i> ⁽²⁾
Provisional thickness	(mm)	$1.5^{(2)}$
Effective contact resistance	$(\mu\Omega)$	5 ⁽³⁾

⁽²⁾ depends on the cable and magnet design, scope of the cable design group

⁽³⁾ ball-park estimate, depends on magnet design, to be fixed as a result of the magnet test

Plan

Major milestones

- October 2013: Cable design (baseline)
- March-June 2014: Cable validation tests
- December 2014: YBCO tape and BSCCO wire production completed
- June 2015: Cable delivery for magnet winding

Cable Design Group

- Review cable options for both high-field HTS materials
- Propose cable layout and dimensions
- Provide initial analysis of cable performance
 - Expected critical current, critical current density, dependence on field
- Finalize a plan for testing of materials and cables

A1: nominate participants from the beneficiaries and associated laboratories

Testing – ideas for a work-split

- Wires and tapes
 - High field Ic: Grenoble, Geneva (Bruker?)
 - Strain dependence of Ic: Geneva, Twente
 - Stress dependence of Ic: Geneva
 - Angular dependence of Ic: Grenoble
 - Magnetization: CERN (Bruker ?)
 - Material analysis: CERN@ESRF
- Cables
 - High field Ic: CERN, Twente
 - Stress dependence of Ic: CERN, Twente
 - Cable magnetization and loss: Twente, Southampton
 - Mechanical properties (and Ic?): Karlsruhe

Interface matters

- Insulation schemes
 - High-temperature withstand (BSCCO)
 - Compatibility of impregnation with basic material (YBCO)
- Quench detection and protection

A2: decide which Task in the WP deals with these matters as the responsible for the work