

Eucard2 – WP10 Future Magnets

Philippe Fazilleau & Lucio Rossi WP10 kick off meeting CERN, 14 June 2013

Budget (total and EU funding)

Beneficiary	Total Person- Months	Total Personnel direct costs	Total Personnel indirect costs	Total Sub- contracting cost	Total Consumable and prototype direct costs	Total Travel direct costs	Total Material and travel indirect costs	Total direct costs	Toal indirect costs	Total costs (direct +indirect)	Total EC requested funding
CERN	86	812,232	487,339	-	442,000	54,500	297,900	1,308,732	785,239	2,093,971	159,977
CEA	40	238,916	150,517	-	160,000	17,000	-	415,916	150,517	566,433	241,231
INPG	43	141,384	84,830	-	12,000	8,000	12,000	161,384	96,830	258,214	93,603
INFN	39	144,495	86,697	-	113,000	11,000	74,400	268,495	161,097	429,592	155,727
КІТ	16	94,224	100,800	-	80,000	10,000	-	184,224	100,800	285,024	106,850
SOTON	12	67,260	59,861	-	40,000	7,000	-	114,260	59,861	174,121	66,271
UNIGE	12	109,872	65,923	-	50,000	4,000	32,400	163,872	98,323	262,195	95,046
UT	20	131,580	78,948	-	50,000	8,000	34,800	189,580	113,748	303,328	109,956
BHTS	38	223,782	304,344	-	150,000	4,000	-	377,782	304,344	682,126	219,114
TUT	12	37,752	22,651	-	-	12,000	7,200	49,752	29,851	79,603	28,856
DTI	10	66,687	46,681	-	20,000	6,000	-	92,687	46,681	139,368	53,758
TOTAL:	328	2,068,184	1,488,592	-	1,117,000	141,500	458,700	3,326,684	1,947,292	5,273,975	1,330,389

The Eucard2 Collaboration, through the steering committee, has the right to modify the assignation of EU funding (the last 45%) according to change of scope or to lack of engagement of a partner.

Task 10.1 Coord

- CERN: Lucio Rossi, WP and task 10.1 Coordinator; G. de Rjik: General mgmt and coordination between WPs; Budget follow up; Secretariat & Archiving; keep list of Publications; Webpage and Indico support; Organization of General Meetings; organize relation with USA and JP collaborators; put in place roadmap to select between YBCO and Bi-2212; Organize the test as insert in a HF facility.
- CEA (Philippe Fazilleau, WP and task 10.1 deputy Coordinator): Reporting both internal and for EU; Control of MS and Deliverables (with their reports). Webpage (content) with task leaders; Relation with TIARA and other relevant EU projects; Organization of the Steering Committees of the WP (10 per year, also via video) and reviews (to be decided).

Task 10.2 Conductor

 CERN (Luca Bottura, task 10.2 leader, Amalia Ballarino): Tech specs of HTS; Planning and Procurement of material: Powder (Nexans) and then Bi-2212 wire, through USA collaboration; YBCO : additional order to Bruker (about 5 km of final specs). Provide a parameters for downselection among Bi-2212 and Ybco Measurements on strands/tapes: Ic, M vs T,B; metallurgy measurements (synchrotron X-ray) Tech Specs of cables; cabling test for Rutherford Bi-2212 and cable production; Cabling test of Roeble YBCO and cable production; Measurements on cables Ic vs. B, T, ε, ;

Task 10-2 cont.

- UniGE (Carmine Senatore, Task 10.2 deputy leader): Measurements of: Ic, RRR, heat capacity, strain sensitivity, T_c distribution, percolation threshold, magnetic relaxation and pinning properties till 21 T. Measurements on basic material and on final conductor.
- INPG (Pascal Tixador): Cable design; cable characterization (which ???) and protection; e.m. of the various cables. Also strand/tape?

Task 10.2 – cont.

- KIT (Wilfried Goldacker, Anna Kario): development of Roebel Coated Conductor Cable prototypes (short and medium samples (5m); Material Processing of YBCO tapes with striation (short samples); Characterization of mechanical and electrical properties of strands/tapes and cables with respect mechanical deformation (bending (77 K), torsion and tensile (4.2 K)) and ability for winding process.
- Univ. of Twente, UT (Marc Dhallé,...): Wire and cable mechanical characterization: Ic vs ε_l, ε_t (Pacman, Tarsis probe) Jc until 20 T, M (DC and Ac), and interstrand resistance (both measurements ans modelling).

Task 10.2 – Cont.

- <u>Univ. of South Hampton SOTON (Yifeng Yang,...)</u>: <u>Measurement of M and AC losses on wire/tapes</u> <u>and cables vs temperature (4-80 K)</u>.
- INFN-LASA (Giovanni Volpini): Ic measurement on wires/tapes and cable till 15 T, vs temperature.
- Bruker HTS (Alexander Usoskin): Development of process of YBCO tapes and production of tapes for the collaboration (about 5 km of 4mm mm wide tape equivalent) for RF&D, studies and tests.
- <u>CEA (Philippe Fazilleau): observer, connection to</u> task.10.3

Task 10.3 - Magnet

- CEA (Maria Durante, Task 1.3 Leader) : Design (in broad sense, FQ included) and construction of Ybco made coil, developing all necessary technology (insulation, stress restrain, joints, etc.), etc.. Partecipation to design of Bi-2212 coil. Goal are 5 T with large margin in stand alone and design of system for stress restrain in the background field of 12-15 T (to approach 16-20 T total)
- CERN (Glyn Kirby, deputy Task 10.3 Leader) : Design (especially for FQ) and support to construction of the YBCO; Design and construction of Bi-2212 coil in the collaboration with USA, with development of proper technologies (Insulation, joints, stress retain, etc.). System for magnetic measurement evaluation.

Task 10.3 cont.

- Grenoble-INP (Pascal Tixador): Design of HTS coils, analysis of e.m. behaviour, development of technology (small coils for investigation, tests under high fields)
- Tampere University of Technology, TUT (Antti Stenvall) : Modelling of HTS coil both YBCO and Bi-2212, Quench analysis and protection evaluation
- Danish Technological Institute, DTI (Nikolaj Zangenberg): development of insulation technology for coated conductor, both gel and epoxy; fabrication and test of sample and then of all tapes/cable; study of extension to Bi-2212.
- INFN (Massimo Sorbi) : Quench computation and link to testing boundary conditions.

Task 10.4 standalone test

- INFN (Giovanni Volpini Task 10.4 Leader) : Preparation of test station at 4.2 K, with adaptation and upgrade of existing facility at LASA; Data acquisition and first analysis of results.
- CERN (Marta Bajko Task 10.4 deputy leader) : Participation to test, providing some equipment (possibly quench antenna, magnetic measurements, fiberglass for temperature and stress monitoring)
- CEA (Maria Durante): participation to test and analysis
- Tampere University of Technology, TUT (Antti Stenvall) : participation to test and analysis
- Danish Technological Institute, DTI (Nikolaj Zangenberg): participation to test and analysis

Job to do next weeks (10 July 2013)

- Put in order listings and have it on web in a usable form...
- Make nice format for presentation and documents with logos of all WP10 Institutes...
- Launch formal agreement with FSU (D. Larbalestier) in form of simple MoU to signed by CERN in name of Eucard2 for the Bi-2212 collaboration (with clause to make easy to exchange material, and personnel).
- I remind you the politics for publication. Of course each one is owner of its own work but this is a collaborative effort: **in doubt better to co-author than to exclude.**
- IP: respect the rules of the CA.

Schedule of WP10

	2013				2014									2015									2016										2	017	7													
	May	June	ylut	August	September	October	November	December	menuel	Fehruary	March	oril	lay	au	Iuly	Aupust	Sentember	Octoher		November	December	January	February	March	April	May	June	ylul	August	September	October	November	December	January	February	March	April	May	June	yint.	August	September	November	Daramhar		January	February	April
MS62						C	、	h					12		T																																	
Organized collaboration with DOE						C	-a	U																																								
Program Bi-2212 (cea*)					C	h	h	ce	n	t s	;				L																							_										
MS63													12	2																														се	rn			
Cable concept design report (cern)																	1																											се	a			
MS64																			1	18													Т	٥c	:tc									in	fn			
YBCO magnet design completion (cea)																	I																															
MS65																												26																				
Test Station Kick-off (infn)																	L												\square																			
MS66												M	a	zη	le	et																		32														
First Cable length for magnet winding												da					L									<u>_</u>	L											-										
(cern)				L		L					(ue	:51	B		5	L		_					_		Li	ar	JIE	2									_										
MS67																								_		nr		Ы	110	-ti	in	n						36										
Report on HE-LHC Main Dipole design																	L									p		u	u			••								F	?e	2D	or	rts				
(cern)				_		_	_	_	_	_	_	_		-	-	_	ł	_	_	_				_			_						_	_					_	Ľ.	-	-	Ŭ.					
MS68				L	_					_							1		_					_														36										_
Technical and economical comparison																	L																							/								
YBCO/Bi2212 magnets (cea)				-	-	-	-	-	-	-	-	_		-	-	-	╉	-	+	_	-			_	Н		-		-		-		_	_	_		_	-	_		-		_					
D10.1	-			-									-			-	╈		1	.8					H				-						_			_		_								
Conceptual study of HTS accelerator						-							-				t																		-			-	-					-				
magnet (cea)																																																
D10.2																										24																						
Prototype cable lengths and report																																																
(cern))	
D10.3																														28	8															L		
Parameters for choice of SC type (cern)																																																
D10.4																																													4	14		
Magnet cold tests (infn)																																																

From the « DOW Eucard² » dated: 2013-02-13

LRossi-PhFazilleau_Eucard2WP10_kickoff

meeting

Milestones

Milestone number ⁵⁹	Milestone name	Lead benefi- ciary number		Delivery date from Annex I ⁶⁰	Comments
MS62	Organized collaboration with DOE Program Bi-2212	cea (cern)	6	12	Report
MS63	Cable concept design report	cern	1	12	Report
MS64	YBCO magnet design completion	сеа	6	18	Report
MS65	Test Station Kick-off	infn	19	26	Report
MS66	First Cable length for magnet winding	cern	1	32	Prototype
MS67	Report on HE-LHC Main Dipole design	cern	1	36	Report
MS68	Technical and economical comparison YBCO/Bi2212 magnets	сеа	6	36	Report

- Concerns only the « official » milestones with EU,
- Reports should be 1 to 2 pages,
- milestones « alarm » in charge of coordination, 2 months before,
- MS62 driven by cern, but cea is mentionned
- « sub » milestones : presented in the tasks description

Deliverables

Delive- rable Number ₅1	Deliverable Title	WP number ₅₃	Lead ben ciary num	efi- Iber	Estimated indicative person- months	Na	ture ⁶²	Dissemi- nation level ವ	Delivery date 64
D10.1	Conceptual study of HTS accelerator magnets	10	сеа	6	20.00	R	Report	PU	18
D10.2	Prototype cable lengths and report	10	cern	1	20.00	R	Report	PU	24
D10.3	Parameters for choice of SC type	10	cern	1	20.00	R	Report	PU	28
D10.4	Magnet Cold test	10	infn	19	40.00	R	Report	PU	44

Deliverables

D10.1) *Conceptual study of HTS accelerator magnets*: The report will contain all key elements of the novel magnet design, considering electromagnetics, mechanical, thermal, stability and protection aspects. (Task 10.3) [month 18]

D10.2) *Prototype cable lengths and report*: This is the first unit length of 10 kA class HTS cable, usable for characterization and short winding tests. (Task 10.2) [month 24]

D10.3) *Parameters for choice of SC type*: The outcome of a mid-term meeting is a set of parameters deemed important for the decision between the two SC materials (Bi-2219 and YBCO) and the criteria on which to make a successful choice. (Task 10.1) [month 28]

D10.4) *Magnet Cold test*: The test will include: warm measurements, cold down, electrical quality assurance at cold, power test, training curve, magnetic measurements and finally retraining for memory effects (Task 10.4)

[month 44]

- Reports should be 6 to 10 pages, main goal is to demonstrate the work is achieved (references to detailed reports or papers)
- Very limited number of deliverables, importance of being on time,
- deliverables « alarm » in charge of coordination, 3 months before,

Technical program - 1

- Developement of YBCO cable (real cable) will take time. Task 10.2 needs ceetainly morfe time to get usable cable.
- While YBCO is our PRIMARY choice (following Eucard and the fact that EU Industry is on YBCO), I would suggest to start with Bi-2212 cable. We are providing advanced powder form Nexans to ASC-FSU.
 - Design cable, magnet and tooling for a Bi-model in cos (alternative ideas to be considered but we need to get early a real model magnet)
 - Rutherford Cable «easy»; stresses for first coil (5 T minimum field) can be not excessive
 - Ask USA a design in // to ours for a similar size CCT mageet
 - We can share all magnet technology with USA (+ advanced)
 - Test and comparison (wed can test also at varaibel temperature!!! And measure losses.

Technical program - 2

- YBCO: concentrate on material development ([†]Jc with B//c) and on cable configuration
 - Cable development is going to be long
 - But we need to start now!!!
 - Vigorous program with Roebel
 - Conceptual study for layout best suited to Roebel: cos ϑ , CCT? Block flat coils? Blocks with flare ends? A mix of them?
 - Who volunteer to study alternative solution?
 - Tape around channel...
 - «Desperate» Rutherford Cable made out with tape?
- Any other crazy ideas?