

Review of Results WP9 - NCLinac Erk JENSEN, CERN

June 2013 EuCARD'13

EUCARD WP9 - NCLinac: goals

- Over 4 successful years, NCLinac focused on identified R&D issues for a future electron-positron linear collider:
 - High gradient acceleration (here normal-conducting)
 - Nanometre (transverse) and femtosecond (longitudinal) beam stabilisation
- NCLinac was well integrated in the CLIC R&D effort concentrated at CERN and the ILC GDE.
- Supported infrastructures: CTF3 at CERN,
 DAΦNE at LNF and ATF2 at KEK,

EUCARD NCLinac - Tasks

- 9.2: Normal Conducting High Gradient Cavities (& module integration)
 - Special PETS for CTF3
 - HOM damping
 - Breakdown simulation
 - Breakdown diagnostics
 - High precision assembly

9.3 Linac & FF Stabilisation

- 1 nm CLIC quadrupole stabilisation
- 0.1 nm FF stabilisation

9.4 Beam Delivery System

- Test tuning procedures at ATF2
- Precision BPM's
- Laser-wire system

9.5 Drive Beam Phase Control

- RF phase monitor
- electro-optical system

EUCARD NCLinac People

		Coordination	High Gradient	Stabilisation	BDS	Phase control
	CERN	Jensen	Riddone, Kahn, Dubrovsky, Muranaka	Mainaud-Durand, Artoos, Esposito, Fernandez Carmona, Modena		Andersson
	CIEMAT		Toral, Sánchez, Aragón, Calero, Gavela, Lara, Gutiérrez, Rodriguez			
	CNRS/LAPP			Jeremie , Balik, Allibe, Deleglise, Brunetti,		
	INFN/LNF					Marcellini
	PSI					Dehler, Kaiser, Arsov
	RHUL	Boogert			Boogert, Lyapin	
	STFC/ASTEC				Angal-Kalinin, J. Jones, Scarfe	
	UH		Österberg, Djurabekova, Raatikainen, Nordlund, Pohjonen, Parviainen			
	UNIMAN		R. Jones, D'Elia		Appleby, Toader, Tygier	
	UOXF-DL			Burrows, Christian		
Eu	UU		Ziemann, Ruber, Leifer, Palaia			

EUCARD WP9.2 – High Gradient Acceleration

CLIC two-beam module

UH: High-precision assembly and

breakdown studies

UNIMAN: HOM damping studies

UU: diagnostic equipment **CIEMAT**: PETS design and

fabrication

EUCARD WP9.2 — Special PETS CIEMAT: PETS design and fabrication

Bars for the first double-length PETS successfully assembled. At current at CERN for EBW

Coupler machining completed and couplers successfully tested

EUCARD WP9.2 - Special PETS CIEMAT: PETS design and fabrication

Readily assembled double length PETS:

S-parameters

- DDS idea combine damping and detuning; relax by using "interleaved" structures.
- Successfully finished (incl. PhD Khan)
- Structures successfully built, tuned and measured!

EUCARD WP9.2 – HOM Damping UNIMAN: HOM damping studies

A **new cell design** has been studied which:

- features improved overall wakefield suppression
- exhibits a larger 1st dipole bandwidth > wakefield within acceptable limits after 6 RF periods
- improved HOM coupling from cell to manifolds
- reduced H-Field value on the cavity walls

→ Highlight talk by Flyura Djurabekova (UH): "Understanding the breakdown: new prospects?" Wed. morning

EUCARD WP9.2 - Breakdown Studies

UH: breakdown studies

- UH developed a powerful "multiscale" model, describing the motion of electrons and ions near a metal-vacuum transition in the presence of strong EM fields!
- Includes plasma formation and plastic deformations.
- Interesting finding: the influence of voids below the surface, their migration/deformation and subsequent effect on field limits.

Simulations can explain observations!

Very successful study, PhD Timkó, ...

EUCARD WP9.2 - Precise assembly

UH: high-precision assembly

- CLIC luminosity target imposes micron-level stability requirement on the two-meter long CLIC modules
- High power dissipation during normal operation result in misalignments in & between different elements.
- Thermo-mechanical modeling of the CLIC modules needed to predict structural deformations affecting final alignment of modules due to internal heat dissipation.
- Numerical results used to compensate misalignments by readjustments of supporting system integrated linear actuators.
 Under validation by experimental tests with full-scale CLIC prototype modules.

Heat dissipation CLIC prototype module type 0 150 W 110 W 1

PETS \rightarrow 440 W DB Q \rightarrow 300 W AS \rightarrow 3280 W * Technical Specification for the CLIC Two-Beam Module G. RIDDONE EDMS 1097388

Cooling system CLIC prototype module type 0

EUCARD WP9.2 - Precise assembly

UH: high-precision assembly

2009-2010 (R. Nousiainen)

- Geometry creation from CAD model
- Implementation of cooling channels using line bodies

R. Nousiainen et al., "Studies on the Thermo-Mechanical behaviour of the CLIC Two-Beam Module", MOP104, LINAC2010, Tsukuba, Japan, 2010.

2011-2012 (R. Raatikainen)

- Update of the module geometry
- Modelling of bellows and actuators using equivalent stiffness elements

R. Raatikainen et al., "Improved Modeling of Thermo-mechanical Behavior of the CLIC Two-Beam Module", TUPPR033, IPAC2012, New Orleans, USA,2012.

2012-2013 (L. Kortelainen)

- Update of the geometry and boundary conditions to the current configuration
- Modelling of heat convection to air
- Parametrisation of model
- Reproduction of load conditions of the thermal tests program
- Comparison to experimental results and validation of modeling

WP9 - NCLinac - Review of Results

EUCARD WP9.2 – Diagnostic equipment UU: diagnostic equipment

 In-situ discharge experiments inside an Electronmicroscope

- Field emission probe
- Simple scanning
- Cut and Slice, voids

Upgrade of the Two-beam test stand in CTF3

- Upgrade diagnostics: positic screens, and FlashBox
- PETS based phase monitor

Needle

Sample Sample stage

EUCARD NCLinac - WP9.2

UU: diagnostic equipment

W Tip

Piezo scanner (smaract) in SEM:

Anode tip diameter 5 µm, gap 1 µm, HV up to 1 kV, vacuum: 1 mPa

- Scanning capability in the piezo-motor probe stage
- Grains visible in optical and electron-microscope.
- Voltage at which 10 nA FE current is reached

UU: diagnostic equipment

Surface and underneath

 Initiate discharge with W tip on copper sample and analyze the discharge site with EDX

Cut and slice, observed sub-surface voids

UU: diagnostic equipment

TBTS upgrade

Flashbox: Detector for electron and ions ejected during breakdown from the acceleration structures in the probe beam of CTF3 at CERN.

UU: diagnostic equipment

PETS as φ monitor

- Idea: Use PETS with recirculation as phase monitor (link to 9.5)
- Electric field at sample m depends on field at time one round-trip time earlier and the driving current Im and its arrival phase α_m

$$E_m = qE_{m-1} + ce^{i\alpha_m}I_m$$

Phase for 23 different beam pulses are very similar

→ Highlight talk by Kurt Artoos (CERN): "Linac Stabilisation", Wed afternoon

EUCARD WP9.3 - Stabilization

Seismometer FB max. gain +FF (FBFFV1mod): 7 % luminosity loss (no stabilisation 68 % loss)

> Courtesy J. Snuverink, J. Pfingstner et al.

EUCARD WP9.4 – Beam Delivery System RHUL/UOXF-DL: ATF2 Laser wire

- LW moved post earthquake
- 1μm V x 100 μm H e⁻ beam
- Initial collisions found
- 4 µm vertical scan so far

ATF-II Extraction Line

EUCARD WP9.4 - Beam Delivery System RHUL/UOXF-DL: ATF2 Laser wire with CBPMs

Signal (A.U.)

1200

Energy Nor 1000

20120418 2045 lws

- Electron beam moves horizontally
- modulates Signal
- Use CBPMs to measure position
- LW follows electron beam

ATF2 cavity BPM system:

- 44 BPM system operating well (36 cband, 4 s-band, 4 IP)
 - Average resolution 200 nm (with attenuation)
 - Best resolution 27 nm
 - Working on developing interaction point region (4 BPMs to monitor focus)
- Calibration difficult due to large orbit changes
 - Previously variation 20 % calibration scale change
 - Now less than 1 % with beam orbit subtraction

RHUL: Beam position monitors

Cavity BPM long term stability

- Calibration constant over weeks
- Two calibration constants required for each BPM
 - Cavity output is single complex number
 - Calibration constant single complex number (magnitude and phase)
- Monitor for 3 week period and conclude EuCARD deliverables with paper/report

Calibration scale

EUCARD WP9.4 - Beam Delivery System ASTEC/UNIMAN: Post-IP line modelling

CLIC post-IP line: ~10 MW of disrupted beam, ~3 MW beamstrahlung photons & other products. Opportunity to measure and optimise the collision luminosity through direct beam-beam products diagnostics.

EuCARD goal: model post-IP region in FLUKA & study backgrounds, diagnose & optimise luminosity

Model complete & validated, including tunnel and dump. Used for P deposition & to measure particle fluxes @ candidate positions for lumi monitors.

This summer to be extended to IP beam offsets to map signals to beam collision parameters.

Energy deposition along beam line

Appleby/Tygier

Energy deposition on main dump

EUCARD WP9.4 - Beam Delivery System

Plus:

- Simulations linking with WP 10.4:
 - The CLIC crab-cavity induces a higher order correlation in the beam dynamics at the IP, leading to luminosity loss within the CLIC BDS design. To compensate for this effect, simulation work was performed on re-optimising the non-linear elements in the CLIC BDS, between the crab-cavity and the Interaction Point, to minimise the luminosity loss and restore the design luminosity of the machine.
- Need for non-linear optimizations of other areas was highlighted.

EUCARD WP9.5 - Drive Beam Phase Control

INFN/PSI/CERN: Phase PU, BAM

The idea of drive beam phase stabilization with feed forward:

- It will increase the drive beam stability and correct phase variation along pulse to the required 0.2° at 12 GHz (46 fs)
 - Measure phase offset before the turn around
 - Correct it after the turn around
- The current CLIC design based on a 4-bend chicane, each bend equipped with a fast kicker so the "height" of the chicane is changing, and thus the time of flight

INFN/PSI/CERN: Phase PU, BAM

Linac - Review of Results

INFN/PSI/CERN: Phase PU, BAM

INFN/PSI/CERN: Phase PU, BAM

The 3 monitors were installed in a string

INFN/PSI/CERN: Phase PU, BAM

- **Drive beam phase measurements**
- Read-out electronics presently limits resolution to 0.2° (46 fs).
- 2 of the 3 monitors are OK and equal to within 0.3°.

Linearity measured – OK up to ±70°

EUCARD WP9.5 – Kickers (extra!) INFN/PSI/CERN: Phase PU, BAM

32

- Strip-line kickers based on the Dafne design
- 1.1 kV for 1 mrad deflection @125 MeV
 - 100 Ω differential impedance
 - At least 50 kW drive needed

EUCARD WP9.5 – BAM Principle INFN/PSI/CERN: Phase PU, BAM

Button (38 mm chamber):

- 80 GHz design BW,
- good resolution and sensitivity:

200pc - 60 pc: 20 fs

60 pC-10pC: 30fs -170 fs

II. Ridge waveguide (RWG) (38 mm chamber):

- strong signal, but in combination with the RF-front end: non linear
- insufficient resolution, ringing,

SITF BAM-Data Acquisition (GPAC ADC12FL)

- The ADC clock is generated by the laser pulses and is shifted simultaneously with them
- The laser pulse amplitude is normalized pulse-to-pulse
- The laser amplitude jitter is monitored online

Florian Löhl, DESY-THESIS-2009-031, March 2009

EUCARD WP9.5 - BAM Layout

INFN/PSI/CERN: Phase PU, BAM

EUCARD WP9.5 – Phase Feed-forward (extra)

INFN/PSI/CERN/UOXF-DL

- This goes on after EuCARD: UOXF-DL have engaged on wide-band SS amplifiers to drive the kickers and a LLRF system with the feed-forward algorithm implemented.
- Phase feed-forward will be installed and tested in CTF3 this summer.

EUCARD NCLinac - Conclusions

- NCLinac can look back on 4 very successful years. Achieved everything we intended and some more!
- Found additional connections/synergies:
 - Uppsala saw voids "predicted" by Helsinki,
 - PETS used as phase monitor
 - Royal Holloway simulated nonlinear effects of crab cavities (10.4)
 - Oxford helps with the wide-band amplifiers for 9.5
- Education: Excellent sourcing of future experts from NCLinac student collaborators (e.g. D'Elia, Timkó, Khan, Muranaka ...)

A big THANK YOU to all colleagues participating in NCLinac and thus contributing to its good success.