

SRF HOM Beam Diagnostics

R.M. Jones, <u>U. van Rienen</u>, T. Flisgen, N. Baboi (UMAN, UROS, DESY)

Traditio et Innovatio

The University of Manchester

Aim

> HOM-based beam diagnostics for the European XFEL

- Beam phase (wrt RF) and position
- In 3.9 GHz and 1.3 GHz cavities

> Benefits

- Reduction in emittance dilution from transverse wakefields via centering beam in accelerating cavities
- Direct, on-line measurement of beam phase wrt RF phase

Monitor beam excited monopole HOM and fundamental mode from klystron, leaking through HOM-coupler

EUCARD

Page 3

- Signals are available through the same cable
- Signal from klystron and beam are easy to separate

HOM Beam Position Monitoring (HOMBPM)

- Dipole modes are the main component of potentially damaging wakefields
 - Their amplitude is proportional to the exciting beam offset
- Idea : Monitor dipole modes from existing HOMcouplers in SC cavities
 - Align beam on cavity axis and thus reduce excited wakefields
 - Measure beam position
 - Measure cavity alignment in cryo-module
 - Choose mode(s) with high R/Q
 More representative for wakefields
 Stronger signal, i.e. better resolution

EUCARD

Page 4

Previous Experience with 1.3 GHz Cavities (FLASH)

> SLAC, CEA, DESY

- > HOMBPM-electronics installed in 40 cavities in FLASH
 - Use 1 dipole mode at 1.7 GHz
 - Used as operator tool for beam alignment
 - Used for measurement of cavity alignment
 - Demonstrated use as BPM 10 µm rms resolution

> Difficulty

 Instability of calibration into BPM-signals (phase or frequency drifts?) → EuCARD²

EuCARD, Task 10.5: UROS, UMAN, DESY, FNAL

- Considerably more challenging than 1.3 GHz cavities, mostly due to 4-cavity coupling
- ➤ EuCARD → Studies (simulations and measurements) of feasibility of HOMBPMs in 3.9 GHz cavities and defined the specs for the electronics
 - ⇒ Use bands of modes instead of single modes
 - Coupling modes around 5.4 GHz for high resolution (~ 20 μm rms)
 - Trapped modes around 9 GHz for localized measurement
- > HOMBPM-electronics for FLASH now built at FNAL
- > Difficulty
 - Instability of calibration into BPM-signals observed (same problem as for 1.3 GHz cavities?) → EuCARD²

Candidate HOMs in 3.9 GHz Cavities

EUCARD

> Significantly more challenging

- 8 coupled cavities cf. 4
- higher bunch frequency (4.5 MHz beam repetition rate cf 1 MHz)
- Different orientation of cavities in module

> Demands significant theoretical and experimental studies \rightarrow EuCARD²

- Careful experimental characterization of each cavity and full module
- Simulations of full 8-cavity module Cascading methods Full module simulation

Challenging to simulate the entire 3.9GHz chain @ XFEL* directly

Alternatively, structure can be decomposed in terms of cavities, HOM couplers, bellows etc:

> Based on a model order reduction technique (MOR) compact models of each individual segment reflecting its RF properties are created:

$$\frac{\partial}{\partial t}\mathbf{x}_r(t) = \mathbf{A}_r \,\mathbf{x}_r(t) + \mathbf{B}_r \,\mathbf{i}_r(t) \qquad \mathbf{v}_r(t) = \mathbf{C}_r \,\mathbf{x}_r(t)$$

*Figure courtesy of E. Vogel

Concatenation of the compact models based on the topology of the module...

EUCARD

...results in a compact model of the entire chain:

$$\frac{\partial}{\partial t}\mathbf{x}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{i}(t) \quad \mathbf{v}(t) = \mathbf{C}\mathbf{x}(t)$$

Based on this reduced model a variety of multi-cavity properties is conveniently computable, such as eigenmodes, R/Q factors, external Q factors, S-parameters and transient beam excitations.

Modes in Presence of Geometrical Errors

EUCARD

Perturbed Geometry

- > Application of perturbative methods for eigenmode computations
 - Aim: <u>Efficient</u> eigenmode computation (parameter studies)
 - Common solvers: Full computation necessary for every geometry variation

 \rightarrow Computationally expensive and inefficient

- Solution: Perturbative methods
 - Full eigenmode computation solely for one (unperturbed) geometry necessary
 - Derive eigenmodes of a varied (perturbed) geometry from these unperturbed eigenmodes

→ Significant reduction of computational effort

Slide Courtesy of Korinna Brackebusch / University of Rostock

Participants in Task 12.4

> Deliverable:

M48: Report on characterisation of HOMs in XFEL cryomodules

> Milestones

 M24: Completed characterisation of HOMs in the 8-cavity XFEL 3HC module (Activity Report)

- M24: Cold S21 measurements on XFEL modules performed (Activity Report)
- M36: Beam-based measurements on XFEL modules performed (Activity Report)
- M36: Completed coupled cavity simulations of 8-cavity module (Activity Report)
- M45: Design of electronics for XFEL HOM diagnostics (Activity Report)

Status and Plans for HOM-based Beam Position Monitoring (HOMBPM)

Status and Plans for HOM-phase Beam Phase Monitoring

	FLASH	European XFEL
1.3 GHz Cavities	 Proof-Of-Principle made (SLAC/CEA/DESY) Electronics under design (same as for XFEL HOMBPM, WUT/DESY) EuCARD²: experimental studies 	- Same as for FLASH
3.9 GHz Cavities	 So far no isolated monopole mode identified, which could be used for phase monitoring Theoretical (and experimental) studies (lower priority in EuCARD²) 	- Same as for FLASH

Summary and Conclusion

- > Get more from existing accelerator components
 - Aim at improving beam quality and stability with small addition to the XFEL (no new vacuum component)

Based on previous experience (including EuCARD), but new challenges

- Impact on other SC accelerators
 - ASTA facility at FNAL
 - KEK-STF
 - ILC etc.