Accelerator perspectives for Synchrotron Light Sources

M. E. Couprie

Synchrotron SOLEIL

I-Introduction

Synchrotron Radiation

- J. Larmor, Phil. Mag. 44, 503 (I897)
- I898 : First correct calculation of the emitted power by an accelerated charged particule ($\left.\mathrm{E} / \mathrm{mc}^{2}\right)^{4} / \mathrm{R}^{2}, \mathrm{~A}$.
Liénard, L'Eclairage électrique, 16,5 (1898)
- 1907-I912 : angular and spectral distribution and polarization properties, G.A. Schott, Ann. Phys. 24, 635 (I907), G. A. Schott, Electromagentic Radiation, Cambridge University Press (I912)
- 1944 : energy limit (0.5 GeV) due to losses due to radiating electrons in a beatraton, D. Ivanenko and I. Pomeranchuk, Phys. Rev. 65, 343 (I944)
- 1945-46: phase stability E. M. McMillan, PRL 68, 1434 (1945),V. Veksler J. Phys. USSR 9, I53 (1946)
- 1946 : synchrotron construction F.K. Gloward et al; Nature 158,413 (1946) particle energy loss measurement on the 100 MeV betatron, attempt to observe synchrotron radiation in the micro-waves failed, J.P. Blewett, Phys. Rev. 69, 87 (1946)
- 1946 : theory on peak spectrum and higher photon energies, J. Schwinger, Phys. Rev. 70, 798 (1946)
- I 947 : first observation of synchrotron radiation F.R. Elder, A.M. Gurewitsch, R.V. Langmuir, H. C. Pollock, Radiation from Electrons in a Synchrotron, Physical Review, 7I, II, (1947), 829-830

50 years spent for the observation of SR!

Undulator Radiation

$\overrightarrow{B_{u}}=B_{u} \cos \left(\frac{2 \pi}{\lambda_{u}} s\right) \vec{z} \quad K_{u}=\frac{e B_{u} \lambda_{u}}{2 \pi m_{o} c}$

SOLEIL @ 2.75 GeV, U20, K=I.8I, Gap 5.5 mm $300 \mu \mathrm{~m} \times 300 \mu \mathrm{~m}$ at 15 m observation

Undulator Radiation : divergence

$$
\lambda_{n}=\frac{\lambda_{u}}{2 \gamma^{2} n}\left(1+\frac{K_{u x}^{2}}{2}+\frac{K_{u z}^{2}}{2}+\gamma^{2} \theta_{x}^{2}+\gamma^{2} \theta_{z}^{2}\right)
$$

ACO

1470 eV

1480 eV : resonant

1487 eV

$$
\sigma_{p h}=0.69 \sqrt{\frac{\lambda_{n}}{2 L}}=\frac{0.69}{2 \gamma} \sqrt{\frac{\left(1+\frac{K_{u x x}^{2}}{2}+\frac{K_{u z}^{2}}{2}\right)}{n N}}
$$

$5^{\text {th }}$ harmonic radiation

- $\lambda<\lambda_{r}$: minimum divergence, lower flux
- $\lambda=\lambda_{r}$: intermediate
$\bullet \lambda>\lambda_{r}$: larger divergence, larger flux; non Gaussian

Influence of energy spread and emittance on the undulator spectrum

Brilliance

$$
\begin{aligned}
B\left(x, z, x^{\prime}, z^{\prime}, s, w, \vec{u}\right)= & \frac{\varepsilon_{2} w^{2}}{2 \pi^{2} h c} \frac{I}{E} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left(\vec{E}\left(x^{\prime}+\frac{b_{x}}{2}, s, w\right) \overrightarrow{u^{*}}\right) \\
& \times\left(\overrightarrow{E^{*}}\left(x^{\prime}-\frac{b_{x}}{2}, s, w\right) \vec{u}\right) \exp \left(-i \frac{w}{c} \overrightarrow{b_{x}}\right) d b_{x} d b_{z}
\end{aligned}
$$

$$
\begin{aligned}
& \text { B: Nber of photons per cell } \\
& \text { phase space } \\
& v=\Delta x \Delta x^{\prime} \Delta z \Delta z^{\prime} \Delta t \quad \Delta \omega / \omega
\end{aligned}
$$

APPROXIMATION of Gaussian beam

$$
B=\left(\frac{w}{\pi c}\right)^{2} \Phi(w, \vec{u}) \exp \left(-\frac{\theta_{x}^{2}}{2 \sigma_{x^{\prime} p h}}-\frac{\theta_{z}^{2}}{2 \sigma_{z^{\prime} p h}}-\frac{x^{2}}{2 \sigma_{x p h}}-\frac{z^{2}}{2 \sigma_{z p h}}\right)
$$

$\sigma_{x^{\prime} p h} \quad \sigma_{z^{\prime}} p h \quad$ Convolution of the electron and photon distributions

$$
\begin{array}{lc}
\Sigma_{p h}=2.74 \sqrt{\lambda_{n} L} / 4 \pi=\frac{1.89 \lambda_{u}}{4 \pi \gamma} \sqrt{\frac{N}{2} \frac{\left(1+\frac{K_{\text {Lu}}^{2}}{2}+\frac{K_{\text {uz }}^{2}}{2}\right.}{n N}} & \text { emission matching: } \\
\Sigma_{p h}^{\prime}=0.69 \sqrt{\frac{\lambda_{n}}{2 L}}=\frac{0.69}{2 \gamma} \sqrt{\frac{\left(1+\frac{K_{u x}^{2}}{2}+\frac{K_{u z}^{2}}{2}\right.}{n N}} & \sigma_{i} / \sigma_{i}^{\prime}=\Sigma_{p h} / \Sigma_{p h}^{\prime} \\
& \beta=\mathrm{L} / 4 \pi
\end{array}
$$

Fourier limit: $\Delta \omega . \Delta \boldsymbol{T} \sim I$
Diffraction limit:
Case of Gaussian beams : c $\Delta \mathrm{t} . \Delta \lambda / \lambda^{2}=0.44$
$\Delta x . \Delta x^{\prime} \sim 1.34 \lambda / 4 \pi$

I-Introduction

Coherence

Transverse coherence

$$
\begin{aligned}
& M\left(x, z, x^{\prime}, z^{\prime}, b_{x}, s, \omega, \vec{u}\right)=\sum_{i}\left(\overrightarrow{E_{i}}\left(x+\frac{b_{x}}{2}, s, \omega\right) \overrightarrow{u^{*}}\right)\left(\overrightarrow{E_{i}^{*}}\left(x-\frac{b_{x}}{2}, s, \omega\right) \vec{u}\right) \\
& M\left(x, z, x^{\prime}, z^{\prime}, b_{x}, s, \omega, \vec{u}\right)=\frac{h}{2 \pi \varepsilon_{0} c} \frac{e}{I} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} B\left(x, z, x^{\prime}, z^{\prime}, s, \omega, \vec{u}\right) \exp \left(-\frac{\omega}{c} \vec{x} \overrightarrow{b x}\right) d x d z \\
& \text { K.J. Kim, Nucl. Instr. Meth.A 246, 7I-76 (I986);; Bazanovl.V.:.Phys.Rev.Spec.Topics AB I5, } 050703 \text { (2012) }
\end{aligned}
$$

Longitudinal coherence

in phase

random emission

$$
P(\lambda)=\underset{\text { Texte }}{P_{\text {inc }}+P_{\text {coh }}=P_{1 e}(\lambda)}
$$

$P_{1 e}$: power emitted by one electron
N : number of electrons
$\tilde{\rho}(\lambda)$: Fourier transform of the bunch longitudinal charge distribution $\rho(z)$

$$
\begin{gathered}
\text { SASE b) } \\
\lambda=\frac{\lambda_{0}}{2 n \gamma^{2}}\left(1+\frac{K^{2}}{2}\right) \quad K=0.94 \lambda_{0}(\mathrm{~cm}) B_{0}(\mathrm{~T})
\end{gathered}
$$

d) direct seeding

HGHG
e)
$1 / \lambda=n / \lambda_{1} /+m / \lambda_{2}$

$G \alpha L_{\text {ond }}{ }^{2} / Y^{3}$

- electron beam-optical wave interaction (spontaneous, stored spontaneous emission, external laser tuned on the fundamental wavelength λ of the undulator)
- energy exchange between the optical wave and the electrons
- microbunching (λ separation)
- coherent emission
- saturation (enhancement of energy spread, unsatisfied resonance condition)

SOLEIL II-Generation of light sources and recent developments

Accelerator type

SWLEILII-Generation of light sources and recent developments $\mathbb{L U N E X 5}$ Towards short period / high field undulators

II-Generation of light sources and recent developments

Towards high field permanent magnets EPU

Courtesy F. Ciocci

T. Raubenheimer HBEBP workshop, 2013, Puerto Rico
S. Sasaki et al,, Jpn. J. Appl. Phys., 31, L194 (1992) S. Sasaki et al, Nucl. Instr. Meth., A331, 763 (1993) S. Sasaki et al, Nucl. Instr. Meth., A347,87 (1994)
P. Elleaume, Nucl. Instr. Meth., A291, 371 (1990) P. Elleaume, J. Synch. Rad.,1, 19 (1994)
R. Carr, Nucl. Instr. Meth., A306, 391 (1991) R. Carr et al , Rev. Sci. Instrum., 63, 3564 (1992) R. Carr, Proceedings of 1992 EPAC, p 489 (1992)
B. Diviacco and R. P. Walker, Nucl. Instrum. Meth., A292, 517 (1990)

Period : 30 mm , gap $15,5 \mathrm{~mm} / 5 \mathrm{~mm}, \mathrm{Br}=1.26 \mathrm{~T}, 45 \mathrm{mmx} 45 \mathrm{~mm}$

Bahrat et al, Proceedings of the 2004 FEL Conference, Triestre, ITALY, p610 (2004)
H. Kitamura et al, J. Electron Spectr. Relate Phenom., 80 ,437, (1996)
A. Hiraya et al, J. Synchr. Rad., 5, 445, (1998)
A. B. Temnykh, PRSTAB, 11,120702 (2008)
A. B. Temnykh,. A 649 (2011) 42-45
M. Moissev et al. Sov. Phys.J. 21, 332, 1978
K.J. Kim NIMA2 I9, 426 (I986)
H. Onuki, Nucl. Instr. Meth., A246, 94, (1986)
H. Onuki et al, Appl. Phys. Lett., 52, 1,33, (1988)

II-Generation of light sources and recent developments

Light source generations

First generation (~1980) :
Parasitic use

Ex:ACO

Second generation (~1985-2020?...) : Dedicated storage rings built for synchrotron radiation, few undulators and wigglers, emittance of few

Third generation (~1990-?..) : low emittance, high number undulators, partial transverse coherence

Fourth generation (2000-...) : short pulses with ERLs and Linacs, longitudinal coherence thanks to FELs

II-Generation of light sources and recent developments
Evolution of brilliance

II-Generation of light sources and recent developments

 What is the fifth generation?

 What is the fifth generation?}

Approach diffraction limit and Fourier- transform limit with larger spectral range and flexibility for the user

- Diffraction limit => Ultimate strage rings, ERL, FELs
- Fourier transform limit : from as pulse to high energy resolution
- High level of stability
- Properties manipulations
- Higher flux
- Single / Multi-user
- Repetition rate : high with recirculating machines, superconducting linacs
- Combinations with other sources (e.g. pump-probe experiments)
or reduce the cost and make it more compact by replacing constituting elements?

What is the fifth generation?

Physics and applications of High Brightness Beams : towards a fifth generation light source Puerto-Rico, March 25-28, 2013

Beyond present SASE based FELs: Better photon performances and further flexibility

- higher photon energy
- larger photon flux, brightness, coherence
- smaller bandwidth : 10^{-6}
=> ridiculously low emittance and energy spread required
- energy spread / wakefields
- modified SASE process, single spike,
seeding, oscillator
- ultrafast : attosecond....
- synchronisation with THz sources
- more user friendly
=> «dramatic increase of X -ray spectrum specialised for experiments»
- multi-users

Towards more compact, universityscale for physics or medecine :

- use of «compact accelerators»
- use of laser as interacting medium :

Compton / Thomson backscattering

- compact FEL proccess
- compact undulators
=> proof-of-principle required, critical measurements technical up-grades synergy among the different approaches

Source comparison

B. Hettel, Ultimate storage ring light sources, design and performances objectives, USR Accelerator R\&D Workshop, Huairou (Beijing), China, October 30, 2012

III-Storage rings based light sources

Synchrotron radiation centers

III-Storage rings based light sources

Synchrotron radiation centers

III-Storage rings based light sources
Ultimate storage rings : towards transverse coherence

B. Hettel, Ultimate storage ring light sources, design and performances objectives, USR Accelerator R\&D Workshop, Huairou (Beijing), China, October 30, 2012

Ultimate storage rings : how?

$$
\begin{aligned}
& \text { Emittance } \\
& \qquad \epsilon_{0} \approx F\left(v_{x}, \text { lattice }\right) \frac{E^{2} \theta^{3}}{J_{x}} \frac{I_{2, d}}{I_{2, d}+I_{2, w}}
\end{aligned}
$$

θ : bending angle per dipole $J_{\mathrm{x}}=\mathrm{I}-\mathrm{D}$, with D partition number due to radiation damping
$I_{2, d} I_{2, w}$ dipole/ wiggler energy loss per tern
strategies for low emittance :

- high number of dipoles / minimization of the H function (stronger focusing) $=>$ figure of merit
=> MBA lattices

$$
M=\epsilon_{0} C^{3} / E^{2}
$$

- damping wiggler but with an increase of the energy spread
- partition number : Generally, D ~ 0 and $J_{x} \sim I$, Robinson theorem : $J_{x}+J_{z}+J_{s}=4$

PETRA III: 6 GeV , I nm large circumference with damping wigglers

[^0]

NSLS II : $3 \mathrm{GeV}, 0.5 \mathrm{~nm}$ large circumference, DBA, with damping wigglers NLSL II CDR

MAX IV: $3 \mathrm{GeV}, 0.24 \mathrm{~nm}$ 7BA with damping wigglers
S. Leemans et al. PRSTAB I2, I 2070 I (2009)

Ultimate storage rings : how?

$$
\begin{aligned}
& \text { Emittance } \\
& \qquad \epsilon_{0} \approx F\left(v_{x}, \text { lattice }\right) \frac{E^{2} \theta^{3}}{J_{x}} \frac{I_{2, d}}{I_{2, d}+I_{2, w}}
\end{aligned}
$$

θ : bending angle per dipole $\mathrm{J}_{\mathrm{x}}=\mathrm{I}-\mathrm{D}$, with D partition number due to radiation damping

$$
J_{x}=1-D
$$

$I_{2, d} I_{2, w}$ dipole/ wiggler energy loss per tern
strategies for low emittance :

- high number of dipoles / minimization of the H function (stronger focusing) $=>$ figure of merit
=> MBA lattices

$$
M=\epsilon_{0} C^{3} / E^{2}
$$

- damping wiggler but with an increase of the energy spread
- partition number: Generally, $D \sim 0$ and $J_{x} \sim I$, Robinson theorem : $J_{x}+J_{z}+J_{s}=4$

PETRA III: 6 GeV , I nm large circumference with damping wigglers

[^1]

NSLS II : $3 \mathrm{GeV}, 0.5 \mathrm{~nm}$ large circumference, DBA, with damping wigglers NLSL II CDR

MAX IV: $3 \mathrm{GeV}, 0.24 \mathrm{~nm}$ 7BA with damping wigglers

III-Storage rings based light sources

Emittance reduction via lattice

MAX IV : $3 \mathrm{GeV}, 0.24 \mathrm{~nm}$ 7BA with damping wigglers D :9T/m, Q: 40T/m, S: $2 \mathrm{kT} /$ $\mathrm{m}^{2}, \mathrm{O}: 30 \mathrm{kT} / \mathrm{m}^{3}$

- Example of USR 7,7 GeV 40 sectors $\times 1$ IOBA 0.028 nm emittance 0.079 \% energy spread

- Example of ESRF from DBA : 4 nm to $7 B A: 0.13 \mathrm{~nm}$ with strong focusing, better und. matching, tight tolerances First planning: commissioning 2019 P. Raimondi USR Accelerator R\&D Workshop, Huairou (Beijing), China, October 30, 2012

Issues and challenges :

- small dynamical aperture =>
* beam lifetime (mitigation by top-up,)
M. Bei et al. NIMA 622 (2010) 5I8-535
* injection (pulse pultipole, on-axis injection, reduced separation between inejcted and stored beam
- Intra Beam Scattering (mitigation by high beam energy, high damping time, round beam)
- Iow collective instability thresholds (TMCI, microwave isntability, Resistive wall instability...)
- Instrumentation (BPMs, strong quadrupoles and sextupoles, vacuum chambers...)

Emittance reduction via partition number

- partition number reduction by combined magnet scheme, Robinon wiggler

$$
\varepsilon_{x}=\frac{C_{q} \gamma^{2}\langle H\rangle_{\text {dipole }}}{J_{x} \rho_{x}}
$$

$D=-I=>\varepsilon_{x} / 2$ and energy spread $x \sqrt{ } 2 \quad B^{*} d B / d x \neq 0$ and $\eta_{x} \neq 0$

SOLEIL case, horizontal emittance : 3.7 $\mathrm{nmrad} \Rightarrow 1.85 \mathrm{nmrad}$
$D=-1=>$

- partition number reduction with a pair of coupling cavities driven in TM2 10 mode and set in π betatron phase difference in a mirror symmetrical optics

$$
\theta_{c}=2 \pi V \eta_{x} / \alpha U_{o}
$$

III-Storage rings based light sources

Emittance reduction via partition number

- partition number reduction by combined magnet scheme, Robinon wiggler

$$
\varepsilon_{x}=\frac{C_{q} \gamma^{2}\langle H\rangle_{\text {dipole }}}{J_{x} \rho_{x}} \quad J_{x}=1-D \quad \varepsilon_{x}=\varepsilon_{x, 0} \frac{1}{1-D} \quad\left(\frac{\sigma_{E}}{E_{0}}\right)^{2}=\frac{2}{2+D}\left(\frac{\sigma_{E, 0}}{E_{0}}\right)^{2} \dot{\dot{j}}
$$

$D=-I=>\varepsilon_{x} / 2$ and energy spread $x \sqrt{ } 2 \quad B * d B / d x \neq 0$ and $\eta_{x} \neq 0$

SOLEIL case, horizontal emittance : 3.7 $\mathrm{nmrad} \Rightarrow 1.85 \mathrm{nmrad}$

- partition number reduction with a pair of coupling cavities driven in TM2 10 mode and set in π betatron phase difference in a mirror symmetrical optics

$\theta_{c}=2 \pi V \eta_{x} / \alpha U_{\circ}$

III-Storage rings based light sources

Emittance reduction via partition number

- partition number reduction by combined magnet scheme, Robinon wiggler

$$
\varepsilon_{x}=\frac{C_{q} \gamma^{2}\langle H\rangle_{\text {dipole }}}{J_{x} \rho_{x}} \quad J_{x}=1-D \quad \varepsilon_{x}=\varepsilon_{x, 0} \frac{1}{1-D} \quad\left(\frac{\sigma_{E}}{E_{0}}\right)^{2} \dot{\dot{j}}=\frac{2}{2+D}\left(\frac{\sigma_{E, 0}}{E_{0}}\right)^{2} \dot{\dot{j}}
$$

$D=-I=>\varepsilon_{x} / 2$ and energy spread $x \sqrt{ } 2 \quad B^{*} d B / d x \neq 0$ and $\eta_{x} \neq 0$

$$
D=\frac{\oint \frac{\eta_{x}}{\rho_{x}^{3}} d s+\frac{2}{B^{2} \rho_{x}^{2}} \oint \eta_{x} B \frac{d B}{d x} d s}{\oint \frac{d s}{\rho_{x}{ }^{2}}}
$$

SOLEIL case, horizontal emittance : 3.7 $\mathrm{nmrad} \Rightarrow 1.85 \mathrm{nmrad}$
$D=-1=>$

- partition number reduction with a pair of coupling cavities driven in TM2 10 mode and set in π betatron phase difference in a mirror symmetrical optics

$$
\theta_{c}=2 \pi V \eta_{x} / \alpha U_{0}
$$

III-Storage rings based light sources

Emittance reduction via partition number

- partition number reduction by combined magnet scheme, Robinon wiggler

$$
\varepsilon_{x}=\frac{C_{q} \gamma^{2}\langle H\rangle_{\text {dipole }}}{J_{x} \rho_{x}} \quad J_{x}=1-D \quad \varepsilon_{x}=\varepsilon_{x, 0} \frac{1}{1-D} \quad\left(\frac{\sigma_{E}}{E_{0}}\right)^{2} \dot{\dot{j}}=\frac{2}{2+D}\left(\frac{\sigma_{E, 0}}{E_{0}}\right)^{2} \dot{\dot{j}}
$$

$D=-I=>\varepsilon_{x} / 2$ and energy spread $x \sqrt{ } 2 \quad B^{*} d B / d x \neq 0$ and $\eta_{x} \neq 0$

$$
D=\frac{\oint \frac{\eta_{x}}{\rho_{x}^{3}} d s+\sqrt{\frac{2}{B^{2} \rho_{x}^{2}} \oint \eta_{x} B \frac{d B}{d x} d s}}{\oint \frac{d s}{\rho_{x}{ }^{2}}}
$$

SOLEIL case, horizontal emittance : 3.7 $\mathrm{nmrad} \Rightarrow 1.85 \mathrm{nmrad}$

$$
D=-1=>
$$

- partition number reduction with a pair of coupling cavities driven in TM2 10 mode and set in π betatron phase difference in a mirror symmetrical optics

$$
\theta_{c}=2 \pi V \eta_{x} / \alpha U_{\circ}
$$

H. Abualrob, P. Brunelle, M-E. Couprie, O. Marcouillé, A. Nadji, L. Nadolski, R. Nagaoka, SOLEIL emittance reduction using a Robinson wiggler, IPAC12:, New Oerlans, Louisiana, 2012

III-Storage rings based light sources

Emittance reduction via partition number

- partition number reduction by combined magnet scheme, Robinon wiggler

$$
\varepsilon_{x}=\frac{C_{q} \gamma^{2}\langle H\rangle_{\text {dipole }}}{J_{x} \rho_{x}} \quad J_{x}=1-D \quad \varepsilon_{x}=\varepsilon_{x, 0} \frac{1}{1-D} \quad\left(\frac{\sigma_{E}}{E_{0}}\right)^{2} \dot{\dot{j}}=\frac{2}{2+D}\left(\frac{\sigma_{E, 0}}{E_{0}}\right)^{2} \dot{\dot{j}}
$$

$D=-I=>\varepsilon_{x} / 2$ and energy spread $x \sqrt{ } 2 \quad B^{*} d B / d x \neq 0$ and $\eta_{x} \neq 0$

$$
D=\frac{\oint \frac{\eta_{x}}{\rho_{x}^{3}} d s+\sqrt{\frac{2}{B^{2} \rho_{x}^{2}} \oint \eta_{x} B \frac{d B}{d x} d s}}{\oint \frac{d s}{\rho_{x}{ }^{2}}}
$$

$$
\eta_{\mathrm{x}}=\text { dispersion function }
$$

$$
\rho_{x}=\text { radius of curvature due to } B
$$

$$
D=-1=>
$$

H. Abualrob, P. Brunelle, M-E. Couprie, O. Marcouillé, A. Nadji, L. Nadolski, R. Nagaoka, SOLEIL emittance reduction using a Robinson wiggler, IPAC12:, New Oerlans, Louisiana, 2012

- partition number reduction with a pair of coupling cavities driven in TM2 10 mode and set in π betatron phase difference in a mirror symmetrical optics

$\theta_{c}=2 \pi V \eta_{x} / \alpha U_{\circ}$

Y. Shimosaki, H. tanaka, Control of damping parititon numbers in a Ring Accelerator with rf Electromagnetic Fields, PRL 110, 154802 (2013) 154802

III-Storage rings based light sources

Emittance reduction via partition number

- partition number reduction by combined magnet scheme, Robinon wiggler

$$
\varepsilon_{x}=\frac{C_{q} \gamma^{2}\langle H\rangle_{\text {dipole }}}{J_{x} \rho_{x}} \quad J_{x}=1-D \quad \varepsilon_{x}=\varepsilon_{x, 0} \frac{1}{1-D} \quad\left(\frac{\sigma_{E}}{E_{0}}\right)^{2} \dot{\dot{j}}=\frac{2}{2+D}\left(\frac{\sigma_{E, 0}}{E_{0}}\right)^{2} \dot{\dot{j}}
$$

$D=-I=>\varepsilon_{x} / 2$ and energy spread $x \sqrt{ } 2 \quad B^{*} d B / d x \neq 0$ and $\eta_{x} \neq 0$

$$
D=\frac{\oint \frac{\eta_{x}}{\rho_{x}^{3}} d s+\frac{2}{B^{2} \rho_{x}^{2}} \oint \eta_{x} B \frac{d B}{d x} d s}{\oint \frac{d s}{\rho_{x}^{2}}}
$$

SOLELL case, horizontal emittance : 3 $\mathrm{nmrad} \Rightarrow \mathrm{I} .85 \mathrm{nmrad}$

$$
\eta_{\mathrm{x}}=\text { dispersion function }
$$

$$
\rho_{x}=\text { radius of curvature due to } B
$$

- partition number reduction with a pair of coupling cavities driven in TM2 10 mode and set in π betatron phase difference in a mirror symmetrical optics

$$
\theta_{c}=2 \pi V \eta_{x} / \alpha U_{o}
$$

$\mathrm{D}=-\mathrm{I}=>\quad \frac{\hat{B}_{w, z}^{2}}{2 g} \approx 89 \mathrm{~T}^{2} / \mathrm{m}$
H. Abualrob, P. Brunelle, M-E. Couprie, O. Marcouillé, A. Nadji, L. Nadolski, R. Nagaoka, SOLEIL emittance reduction using a Robinson wiggler, IPAC12:, New Oerlans, Louisiana, 2012

III-Storage rings based light sources
Somes examples

Brightness increase

Hor. Emittance [nm]	4	0.15	$\mathbf{0 . 0 1}$
Vert. Emittance [pm]	3	2	$\mathbf{2}$
Energy spread [\%]	0.1	0.09	$\mathbf{0 . 0 9}$
Betax[m]/Betaz [m]	$37 / 3$	$6 / 2$	$\mathbf{6 / 2}$

P. Raimondi USR Accelerator R\&D Workshop, Huairou (Beijing), China, October 30, 2012

Brightness increase

Probably for the next 40-50 years

III-Storage rings based light sources

Short pulses

- reduction of the momentum compression factor
- high RF voltage / modulated RF voltage or phase

$$
\sigma_{l}=\alpha c \sigma_{\gamma} / \Omega_{s}
$$

Dedicated user shifts at ANKA, SOLEIL, BESSY....

- flipping of the transerse phase space to longitudinal and vis-versa (CRAB cavities) :

$$
\begin{gathered}
\text { I ps } \\
\text { vertical kick }
\end{gathered}
$$

- slicing : 100 fs , reduced intensity
A. Zholents et al. PRL 76,I996, 916
 interaction in wiggler

III-Storage rings based light sources

Short pulses

Wavenumber $v\left(\mathrm{~cm}^{-1}\right)$

Figure 5: Spectrogram of the turn-by-turn THz signal measured with the HEB detector system at ANKA as a function of the single bunch current [24].

C. Evain et al. EPL 98, 4006 (2012)
\sum BESSY

Figure 1: Accelerating voltage versus time. Voltages of the fundamental RF cavity (green), the 1.5 GHz cavity system (red), the 1.75 GHz cavity system (blue) and the sum (black) are drawn. The ellipses indicate the locations of the short bunch ($t=0$ and $t=4 \mathrm{~ns}$) and the long bunch ($t=2 \mathrm{~ns}$).
1.5 ps and 15 ps

Figure 1: Schematic view of the bunch length-current relation. The bursting limit is given by the straight line. The present situation is given in red, the predicted BESSYVSR upgrading in blue, and the bursting threshold is shifted by a factor of 100 to bigher currents [15]. The dotted line indicates the predicted deviations from the simple exponential scaling relation.
G. Wustefeld et al., IPAC 201 I, San Sebastian, Spain, p. 2936.
M. Ruprecht, IPAC 2013
A. Jankowiack, G.Wustefeld, Synch. rad. News II June 20I3, 37-4 I
besides isolated bunch and multi-bunches filling pattern, «tailored bunch operation» by varying the orbit or the energy of one bunch with respect to the remaining ones.

IV-(Linac-based) FELs \& ERLs

ERLs

ERL advantages :

- freedom to use the optimum beta function
- ability to provide ultra low emittance
- possible implementation of long undulators
- easy longitudinal bunch manipulation => short pulses

Table 1
Present advanced photon source beam parameters compared to ERL X-ray source parameters in high coherence and high flux modes [4].

Quantity	APS	ERL high coherence
Beam energy (GeV)	7	7
Average current (mA)	100	7
Repetition rate (MHz)	$6.5-352$	25
Bunch charge (nC)	<59	1300
Horizontal emittance (geometric pm), [normalized $(\mu \mathrm{m})]$	$3100[42]$	0.019
Vertical emittance (geometric pm), [normalized $(\mu \mathrm{m})]$	$25-50[0.35-0.70]$	$6[0.08]$
rms bunch length (ps)	>20	$6[0.08]$
rms energy spread $(\%)$	0.1	2
Photon brightness $\left(10^{20} \mathrm{p} /\left(\mathrm{s} \mathrm{mm}^{2} \mathrm{mrad}^{2} 0.1 \% \mathrm{BW}\right)\right)$	0.3	0.015

Photon brightness at 10 keV reported.
S. benson et al. NIM A 637 (201I) I-II

ERL challenges :

- injector (ultra-low emittance), photocathode and drive laser

At present : ERL test facilities driver for IR-FELs

- emittance preservation
- beam stability and collective effects (space towards ERL X-ray source charge, wakefields, ion trapping, IBS...)
- beam loss, halo
probably for the next 50 years
- cryogenics

IV-(Linac-based) FELs \& ERLs

XFEL on ERLs

Optics of high reflectivity in normal incidence: $\mathrm{C}, \mathrm{BeO}, \mathrm{SiC}, \mathrm{Al}_{2} \mathrm{O}_{3}$
$\mathrm{Ex}: \mathrm{Al}_{2} \mathrm{O}_{3}$ case in normal incidence in $(000$ 30) plane, $30 \mathrm{~K}, 14,36 \mathrm{eV}$

$R=0.96,4 \%$ transmission for extraction $\mathrm{R}=0.99$ for diamond

Cavity configuration
$2 \mathrm{Al}_{2} \mathrm{O}_{3}$ mirror cavity in normal incidence

-CRL : parabolic compound refractive lenses:
2 parabolic mirrors ($\mathrm{Be}, \mathrm{T}=0.997$) +I eelipsoidal mirror
in grazing incidence

IV-(Linac-based) FELs \& ERLs

First FELs

First demo : on linear accelerator, MARK III, Stanford, infra-red
D.A. G. Deacon et al, First Operation of a FEL. PRL

38, I6, I977, 892

HELICAL MAGNET

FIG. 2. Emission spectrum of the laser oscillator above threshold (top) and of the spontaneous radiation above threshold (top) and of the spontan

IV-(Linac-based) FELs \& ERLs

Overview of short wavelength FEL : present

operating FEL VUV- soft X ray hard X ray

Overview of short wavelength FEL : future

project operating FEL hard X ray

IV-(Linac-based) FELs \& ERLs
X-ray FELs : LCLS (USA, I.5-I5 A, 2 mJ)

32 years after the first FEL, 50 years after the first laser

IV-(Linac-based) FELs \& ERLs

X-ray FELs : LCLS

LCLS Operational Performance :

280 eV - 10 keV, > 70 GW, $6 \mathrm{~mJ}, 96.7$ \% (94.8) electron (photon) avalaibility.
Energy Loss Scan History all pC
Courtesy T. Raubenheimer 08/2011 to 09/2011

IV-(Linac-based) FELs \& ERLs

X-ray FELs : LCLS II (250 pC, I 20 Hz) 250 eV- 13 keV

- Polarisation control (DELTA undulator)
- TW level by tapering
- self seeding in soft X-ray

Completed
Ongoing
Under development

IV-(Linac-based) FELs \& ERLs

Hard X ray FEL : SACLA (SPring-8 Angstrom Compact LAser)

SACLA

Possibility to use the LINAC for injecting SPring-8 in ERL=> SR of high energy

2011 : Lasing SACLA on 7 June 7-2011 : 0.12 nm
http://wwwxfel.spring8.or.jp/ index.htm

IV-(Linac-based) FELs \& ERLs

Hard X ray FEL : SACLA (SPring-8 Angstrom Compact LAser)
 Gain curve of $10 \mathbf{k e V}$
 Photon energy range

H.Tanaka, M. Yabashi et al., Nature Photonics 6, 20 I 2, 540-544

Stability of FEL pulse energy ($10 \mathrm{keV}, 7.9 \mathrm{GeV}, \mathrm{K}=2.1$)

Courtesy T. Hara
 IV-(Linac-based) FELs \& ERLs

Hard X ray FELs under construction/project

- European XFEL (17 GeV)

SC Linac, $2 \mathrm{~km}, 23 \mathrm{MV} / \mathrm{m}, 1 \mathrm{nC}, 1.4 \mathrm{~mm} . \mathrm{mrad}$, uncorrelated $\sigma_{V}=2.5 \mathrm{MeV} \mathrm{rms}, 10 \mathrm{~Hz}$,

Parameter	Unit	SASE 1	SASE 2		SASE 3		
Electron energy	GeV	17.5	17.5	17.5	17.5	17.5	10.0 **
Wavelength	nm	0.1	0.1	0.4	0.4	1.6	6.4
Photon energy	keV	12.4	12.4	3.1	3.1	0.8	0.2
Peak power	GW	20	20	80	80	130	135
Average power*	W	65	65	260	260	420	580
Photon beam size (FWHM)	$\mu \mathrm{m}$	70	85	55	60	70	95
Photon beam divergence (FWHM)	$\mu \mathrm{rad}$	1	0.84	3.4	3.4	11.4	27
Coherence time	fs	0.2	0.22	0.38	0.34	0.88	1.9
Spectral bandwidth	\%	0.08	0.08	0.18	0.2	0.3	0.73
Pulse duration	fs	100	100	100	100	100	100
Photons per pulse	\#	10^{12}	10^{12}	1.6×10^{13}	1.6×10^{13}	1.0×10^{14}	4.3×10^{14}
Average flux	\#/s	3.3×10^{16}	3.3×10^{16}	5.2×10^{17}	5.2×10^{17}	3.4×10^{18}	1.4×10^{19}
Peak brilliance	B	5.0×10^{33}	5.0×10^{33}	2.2×10^{33}	2.0×10^{33}	5.0×10^{32}	0.6×10^{32}
Average brilliance*	B	1.6×10^{25}	1.6×10^{25}	7.1×10^{24}	6.4×10^{24}	1.6×10^{24}	2.0×10^{23}

IV-(Linac-based) FELs \& ERLs

Soft X ray FELs : FLASH, SCSS test.Acc.

FLASH : 30 nm (2005) 6 nm (2007), 4.5 nm (20I0), FLASH-II under construction

SCSS Test Accelerator : 60-40 nm, to be moved to SACLA (3 nm, I. 3 GeV)

IV-(Linac-based) FELs \& ERLs

Soft \mathbf{X} ray FELs : FERMI@ELLETRA

0.3 - GW's range, sub-ps to 10 fs , variable polarization

FELI : Single stage cascaded FEL, full specs. achieved, dedicated to user experiments
Continuously tuneable in the $20-65 \mathrm{~nm}$ range (up to 100 nm possible with specific machine setup)
Bandwidth (best 0.06\% @ 32 nm), 30-100 uJ / pulse (depending on wavelength setting - up to a factor 2-3 more relaxing the spectral purity requirements)

FEL2: Double stage, fresh bunch, cascade FEL, in commissioning March 2013 , commissioning @l.23GeV, $8.16(25 \mu \mathrm{~J}), 6.53,5.44 \mathrm{~nm}$, coherent spectra visible down to $4.35 \mathrm{~nm}(\approx 200 \mathrm{~nJ})$, June 2013, commissioning @l. 5 GeV ...

IV-(Linac-based) FELs \& ERLs

SASE : spikes in longitudinal and spectral distributions

R. Bonifacio et al, Opt. Comm. 50, I 984, C. Pelligrini et al, NIMA475, 200 I, I
K. J. Kim et al, PRL57, I986, I87I
A.M. Kondratenko et al, Sou Phys. Dokl. 24 (I2), 1979, 989

$$
\rho=\frac{1}{4 \pi \gamma}\left[\frac{2 \pi^{2}}{\sigma_{t}}\left(J J \lambda_{o} K\right)^{2} \frac{I}{I_{A}}\right]^{1 / 3} \quad L_{g}=\frac{\lambda_{o}}{4 \sqrt{3 \pi \rho}}
$$

limited temporal coherence («spikes»), pulse to pulse jitter

Single spike operation

S. Reiche et al., NIMA 593 (2008) 45-48

SIMULATED FEL PULSES

LCLS

20 ps, 14 GeV
with energy chirp on the electron beam and undulator tapering

IV-(Linac-based) FELs \& ERLs

Improvement of longitudinal coherence with seeding

- temporal coherence given by the external seed laser
- improved stability (intensity, spectral fluctuations and jitter) => pump-probe experiments
- quicker saturation $=>$ cost and size reduction

IV-(Linac-based) FELs \& ERLs

Short wavelength HHG direct seeding

SCSS Test Acc. SPARC, sFLASH

HHG seeding at 160 and 60 nm on SCSS Test Accelerator (coll.
Franch-Jap), at 160 nm at SPARC, at 30 nm on SFLASH Improvement of hit rate by EO sampling to 30 \% (Tomizawa et al.)

G. Lambert et al., Nature Physics Highlight, (2008) 296-301

G. Lambert, et al., EPL88-5-54002, 2009

whowior

- improvement of temporal coherence, - jitter reduction, quicker saturation, - higher order harmonic level

T. Tanikawa et al., EPL 106, 3 (201I) 34001
T. Togashi et al., Optics Express, 1, 2011, 317-324

IV－（Linac－based）FELs \＆ERLs

Seeding and up－frequency conversion

L．Giannessi et al．，FEL experiment at SPARC ： seeding with harmonics generated in gas，FEL 2010，Malmo，Sweden

HGHG $\lambda_{\mathrm{u} 2}=\lambda_{\mathrm{u}} / \mathrm{q}$, L．H．Yu et al，NIMA 393 （I997） 96 Fresh bunch HGHG：non heated part of the electron bunch used，L．H．Yu et al，NIMA 483 （2002） 493
Cascading HGHG：$\lambda_{u 2}=\lambda_{u 1} / q, \lambda_{u 4}=\lambda_{u 1} / \mathrm{p}$ Harmonic cascade：$\lambda_{\mathrm{u} 2}=\mathrm{n} \lambda_{\mathrm{u}} / \mathrm{q}$ ，
L．Giannessi，P．Musumeci，New Journal Phys．8，（2006）， 294

Ex cascade（modulator and radiator）＠SPARC

M．Labat，et al．，Phys．Rev． Lett．107，224801（201I）

Ex FEL2＠ FERMI＠ELETTRA with a 2－stage cascade，from 200 nm to 10.8 nm

IV-(Linac-based) FELs \& ERLs

Seeding stability

Seeding @ 160 nm (SCSS Test Accelerator)

FERMI FELI

Figure 4 | Single-shot and multi-shot spectra at 32.5 nm . a, Measured FEL and seed laser spectrum (dashed red and continuous blue lines respectively) b, Acquisition of 500 consecutive FEL spectra.

Seeding @ 60 nm (SCSS Test Accelerator) synchronisation improvement by Electro-Optical Sampling (Tomizawa et al.)

Tomizawa et al, Seeding workshop, Trieste, 2012 Dec.,

IV-(Linac-based) FELs \& ERLs

Self-seeding for soft and hard X ray domain

Feldhaus et al., Opt. Comm I 40 (I997) 34 I Geloni, Jounral. Modern Optics, 58, I6, 20 II

Figure 5. Single-shot (a) and averaged (b) x-ray spectrum in SASE mode (red) and self-seeded mode (blue). The FWHM single-shot seeded bandwidth is 0.4 eV , whereas the SASE FWHM bandwidth is approximately 20 eV . Vertical scales have the same arbitrary units in both plots (a) and (b). The chicane is turned off for the SASE measurements, but necessarily switched on for the self-seeded mode.

Demonstration of self-seeding in a hard-X-ray free-electron laser, J.Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Yu. Shvyd'ko, S. Spampinati, S. Stoupin, S. Terentyev, E.Trakhtenberg, D. Walz et al., Nature Photonics 6, 693-698 (2012)

IV-(Linac-based) FELs \& ERLs

Two laser- electron interactions : echo

- with phasing of the emettors on linac:
first proposition on Linac for LEL (Stanford)
experimental demo at Stanford and in Shanghai Test machine in the UV

D. Xiang et al., PRL I05, I I 480 I (2010)

Zhao et al., Proceed FEL conf, Mamö (2010), Nature Photonics

IV-(Linac-based) FELs \& ERLs

Towards spikes reduction with iSASE

Improve longitudinal coherence by increasing the longitudinal slippage (ISASE)

Single shot spectrum ($13.8 \mathrm{GeV}, 150 \mathrm{pC}$)

Courtesy T. Raubenheimer
J.Wu, A. Marinelli, C. Pelligrini. FEL 2012

IV-(Linac-based) FELs \& ERLs

Two-color FEL
Two colour operation of a Free Electron Laser and applications in the mid-infrared, R.Prazeres, F.Glotin, C.Insa, D.A.Jaroszynski, J.M.Ortega, Nuclear Instr. and Methods, A407, 464 (I998), Two colour operation of a Free Electron Laser and applications in the mid-infrared, R.Prazeres, F.. Glotin, C.Insa, D.A.Jaroszynski, J.M.Ortega, Eur. Phys.J. D3, 87 (1998)

LCLS with chicane delay

- double slotted emittance spoiler enabling to contro the delay (fresh bunch)
- iSASE with delay (phase shifter), undulators slightly detuned to act as phase shifters. UI 5KI), U2 (K2), Ul(KI), U2(K2)

Pulse splitting + chirp @ FERMI

X-ray direct splitting @LCLS

A.A. Lutman et al., Experimental demonstration of fs two-color X-ray FELs, PRL IIO, I3480I (2013)

Pulse splitting in short wavelength free electron laser,
M. Labat, N. Joly, S. Bielawski, C. Swaj,
C. Bruni, M. E. Couprie,

Phys. Rev. Lett. I03 (2009) 26480 I
G. De Ninno et al. PRL, IIO, 06480I (2013,

First C*(111) crystal is $100 \mu \mathrm{~m}$ thick

- Highly transmissive for X-rays outside Bragg reflection bandwidth)
tEIL

Ultra-short pulses

Emittance spoiler
P. Emma. PRL 92 (7), 07480 I (2004)
I. Martin, R. Bartolini, PRSTABI 4, 030702 (20II)

> energy chirped electron beam : -radiation from energy chirp beam used as a seed for a second stage
C. Schroeder et al., NIMA 483, 89 (2002)

- optical compression
C. Pelligrini, NIMA 445, I 24 (2000)

electron energy/ trajectory modulation in a small part of the bunch with a few cycle laser A.A. Zholents, PRSTAB 8, 04070 (2005);A.A. Zholents, G. Penn . PRSTAB 8, 050704 (2005), A. Zholents et al., New J. Physics IO, 025005 (2008) selective amplification

Few cycle laser
$1 \mathrm{~mJ}, 5 \mathrm{fs}$

A.A. Zholents, W. Fawley . PRL 92 (22), 22480 I (2004), E. Saldin et al., Opit. Comm. 239, I6I (2004), E. Saldin et al., "PRSTAB9, 050702 (2006)

IV-(Linac-based) FELs \& ERLs

Towards higher power

Tapering : slightly adjust the undulator field to keep the resonance
$\lambda=\frac{\lambda_{0}}{2 n \gamma^{2}}\left(1+\frac{K^{2}}{2}\right) \quad K=0.94 \lambda_{0}(\mathrm{~cm}) B_{0}(\mathrm{~T})$
N. M. Kroll, Phys. of Quantum Electron. 7, II 3 (I980)
L. Giannessi et al. PRL I06, I44801 (201 I)

Enhanced SASE (ESASE)

A.A. Zholents. PRSTAB 92 (8), 04070 (2005)

IV-(Linac-based) FELs \& ERLs

Transverse mode :Young slit experiments

FLASH

FERMI

Figure $\mathbf{3} \mid$ Measured beam profiles and double slit diffraction pattern. a. FEL spot size measured on a YAG screen positioned 52.4 m downstream from the radiator exit. The main signal is well reproduced by a Gaussian profile and is characterized by a second moment of $\sim 2 \mathrm{~mm}$ in both the vertical and horizontal directions. b, FEL spot size measured on a second YAG screen positioned 72.5 m downstream from the radiator exit. In this case the measured horizontal and vertical beam dimensions are 2.6 mm and 2.4 mm , respectively. c,d, Image and projection of the interference patte

IV-(Linac-based) FELs \& ERLs

Superconducting LINAC : Toward higher repetition rate

IV-(Linac-based) FELs \& ERLs

Superconducting LINAC : Toward higher multiple FEL lines

NGLS performance

High stability CW superconducting linac; laser heater, bunch compressors

High-brightness, high rep-rate injector
 high rep-rate injector

Beam spreader

> Expandable to increase capacity and capability

High repetition rate soft X-ray laser array

- Up to 10^{6} pulses per second
\circ Average coherent power up to $\sim 100 \mathrm{~W}$
Spatially and temporally coherent X-rays (seeded)
- Ultrashort pulses from ≤ 1 fs to ~ 300 fs
- Narrow energy bandwidth to 50 meV

Tunable X-rays

- Adjustable photon energy from 100 eV - 1.25 keV , 2 keV achievable
- Moderate to high flux with $10^{10}-10^{12}$ photons/pulse

Expandable

- Capability (e.g. repetition rate, pulse duration, tuning range)
- Capacity (additional FEL beamlines)

Courtesy J. Corlett

IV-(Linac-based) FELs \& ERLs

Superconducting LINAC : Toward higher multiple FEL lines

NGLS performance

High stability CW superconducting linac; laser heater, bunch compressors

High-brightness, high rep-rate injector

Beam spreader

High repetition rate soft X-ray laser array

- Up to 10^{6} pulses per second
\circ Average coherent power up to ~100 W
Spatially and temporally coherent X-rays (seeded)
- Ultrashort pulses from ≤ 1 fs to ~300 fs
- Narrow energy bandwidth to 50 meV

Tunable X-rays

- Adjustable photon energy from 100 eV - $1.25 \mathrm{keV}, 2 \mathrm{keV}$ achievable
- Moderate to high flux with $10^{10}-10^{12}$ photons/pulse
- A CW SCRF linac provides a "backbone" for delivering highbrightness electron beam to an array of independent FELs
- Nominal high-level linac parameters
- 300 pC
- 1 MHz
- 2.4 GeV

Expandable

- Capability (e.g. repetition rate, pulse duration, tuning range)
- Capacity (additional FEL beamlines)
- $16 \mathrm{MV} / \mathrm{m}$
- 500 A
- 300 fs

Courtesy J. Corlett

IV-(storage ring based) FELs

XFEL on low emittance ring

Soft X-ray FEL in switched by-pass
A.S. Fischer et al. $40 \AA$ designs for the PEP storage ring, NIM 318 (1992)730-735

Can inject special short, high peak current bunch to lase for a few turns

Soft X-ray partial lasing with stored beam in PEP-X
Z. Huang, C. Pellegrini et al.

SASE with Transvers eGradient Undulator
Z. Huang, Y. Cai, Y. Ding

$$
\begin{gathered}
E=4.5 \mathrm{GeV} \quad \varepsilon_{\mathrm{x} / \mathrm{y}}=160 / 1.6 \mathrm{pm} \quad \delta \mathrm{E} / \mathrm{E}=1.6 \times 10^{-3} \mathrm{rms} \quad \sigma_{\mathrm{z}}=1 \mathrm{ps} \quad Q=0.75 \mathrm{nC} \\
\mathrm{I}_{\mathrm{pk}}=300 \mathrm{~A} \\
\eta_{\mathrm{y}}=0.05 \mathrm{~m} \quad \beta_{\mathrm{x} / \mathrm{y}}=16 / 50 \mathrm{~m} \quad \sigma_{\beta}=52 \mathrm{~mm} \quad \sigma_{\eta}=78 \mathrm{~mm} \\
\text { vertical undulator: } \lambda_{\mathrm{u}}=3 \mathrm{~cm} \quad \mathrm{~K}=3.7 \quad \lambda_{\mathrm{ph}}=1.5 \mathrm{~nm}
\end{gathered}
$$

IV-(storage ring based) FELs

XFEL on low emittance ring

Soft X-ray FEL in switched by-pass
A.S. Fischer et al. $40 \AA$ designs for the PEP storage ring, NIM 318 (1992)730-735

Can inject special short, high peak current bunch to lase for a few turns

Soft X-ray partial lasing with stored beam in PEP-X
Z. Huang, C. Pellegrini et al.

$$
\begin{gathered}
E=4.5 \mathrm{GeV} \quad \varepsilon_{x / y}=160 / 1.6 \mathrm{pm} \quad \delta \mathrm{E} / \mathrm{E}=1.6 \times 10^{-3} \mathrm{rms} \\
\quad \mathrm{I}_{\mathrm{pk}}=300 \mathrm{~A}
\end{gathered} \begin{gathered}
\sigma_{\mathrm{z}}=1 \mathrm{ps} \quad Q=0.75 \mathrm{nC} \\
\eta_{\mathrm{y}}=0.05 \mathrm{~m} \quad \beta_{\mathrm{x} / \mathrm{y}}=16 / 50 \mathrm{~m} \quad \sigma_{\beta}=52 \mathrm{~mm} \quad \sigma_{\eta}=78 \mathrm{~mm} \\
\text { vertical undulator: } \lambda_{\mathrm{u}}=3 \mathrm{~cm} \quad \mathrm{~K}=3.7 \quad \lambda_{\mathrm{ph}}=1.5 \mathrm{~nm}
\end{gathered}
$$

$$
\begin{array}{ll}
\mathrm{E}_{\mathrm{e}-}=4.5 \mathrm{GeV} & \varepsilon_{\mathrm{x}, \mathrm{y}}=\sim 11 \mathrm{pm}-\mathrm{rad} \\
\lambda_{\mathrm{FEL}}=1 \mathrm{~nm} & \lambda / 4 \pi=80 \mathrm{pm}-\mathrm{rad} \\
\mathrm{I}_{\mathrm{pk}}=300 \mathrm{Apk} & \mathrm{~L}_{\mathrm{ID}}=50-100 \mathrm{~m} \\
\mathrm{P}_{\mathrm{pk}}=\text { few hundred } \mathrm{kW} \quad \text { rep rate: } \\
\mathrm{kHz}
\end{array}
$$

SASE with Transvers eGradient Undulator
Z. Huang, Y. Cai, Y. Ding

V-Novel accelerators for light sources

Laser Wakefield Accelerator

Intense laser focused in a gas jet / cell / capillary => ions : accelerator electric field

LWFA beam

- Very short
- Strongly diverging (I mrad)
- Small size
- Large relative energy spread (I \%)

C. Rechatin et al., Phys. Rev. Lett. IO2, I 94804 (2009)

W. P. Leemans et al., Nature Physics 4I 8, 2006, 696

I. 5 fs RMS duration : Peak current of 4 kA
O. Lundh et al. Nature Physics,

200220042009
Energy spread (\%) $100 \quad 5 \quad$ |
below : C. Cipiccia et al. Nature Physics, 201 I

Laser Wakefield Accelerator

Production or radiation :

- betatron radiation
- Thomson scattering
- undulator spontaneous emission
- FEL?

V-Novel accelerators for light sources

LWFA based FEL

- Energy spread : I \%, divergence I mrad
=> strong focusing + chicane decompression + chromatic matching
Step 3

EUCARD, EUCARD2 and and Workshop on Visions for accelertor future, CERN, June 11-13, 2013

V-Novel accelerators for light sources

LWFA based FEL

Example of LUNEX5 : free electron Laser Using a New accelerator for the Exploitation of X-ray radiation of $\mathbf{5}^{\text {th }}$ generation:

$40-4 \mathrm{~nm}, 20 \mathrm{fs}$ and shorter
4G+ : towards full temporal and transverse, short pulses, multi-FEL lines to be validated by, 5G: (Conventional Linac replaced by a LWFA), FEL being viewed as an qualifying LWFA application pilot user experiments
electron beam transport for FEL amplification

Also DESY,, OASIS (Berkeley), Stratclyde et al.

V-Novel accelerators for light sources

LWFA based FEL

- Energy spread : I \% too large for FEL amplification => chicane decompression / transverse gradient undulator

$$
\frac{\Delta K}{K_{0}}=\alpha x . \quad \eta=\frac{2+K_{0}^{2}}{\alpha K_{0}^{2}}
$$

Gap	6 mm
$\mathrm{~B}_{\max }$	-2.5 T
$\operatorname{Int}[\mathrm{BdB} / \mathrm{dX}]$	$193 \mathrm{~T}^{2}$
Period length	164 mm
No. of periods	12

Z. Huang et al., Phys. Rev. Lett. I09, 20480 I (2012)
T. Smith, J. M. J. Madey, L. R. Elias, and D.A. G. Deacon, J.Appl. Phys. 50, 4580 (I979)

V-Novel accelerators for light sources

Dielectric accelerator

[Max Ho, UCLA Nanolab]
B. Naranjo, A. Valloni, S. Putterman, J. B. Rosenzweig, stable charge-particle accleration and focusing in an laser accelerator using spatial harmonics, Phys. Rev. Lett. 109, 176803 (2012)
R. Candler et al. High brightness electron beam workshop, Porto-Rico, 2013

- Resonant spatial harmonic provides acceleration
- non resonant spatial harmonics provides focusing -hole diameter typically 800 nm

Example of GALAXIES project UCLA

IV-Novel accelerators for light sources

The inverse FEL

STELLA 2 : gain of 17% of the energy
IFEL @ UCLA : I5 => 35 MeV in $25 \mathrm{~cm}(0.5 \mathrm{TW} @ 10.6 \mu \mathrm{~m}), 70 \mathrm{MeV} / \mathrm{m}$
RUBICON, LLNL : 105 MeV achieved recentyly
W. Kimura et al. PRL92, I5480 (2004)
P. Musumeci et al. PRL94, I5480I (2005)
P. Musumeci EAAC , Elba, May 2013

IV-Novel accelerators for light sources

towards high rep. rate LWFA based FEL

Towards 100 TW to PW laser peak power, with MW average power with an improve efficiency (target : 30%)

- Yb doped single mode fiber (fiber noise)
- $\mu \mathrm{m}$ precision fiber assembly
- fiber to fiber phase shift measurement : quadriwave lateral shearing interefrometer

2) Neighbor fibers interfer with replicas

3) A phase map is captured every ms, making possible phase correction with phase modulator
J. Primot (ONERA)

Only 6 pixels are necessary to reach $\lambda / 60$ precision.
G. Mourou EEAC, May 20I3, Elba

- phase correction by optical modulator :

64 fibers locked in 2011 !

Champ lointain

G. Mourou EEAC, May 20I3, Elba

- non linear effects
phase locking of 8 fiber amplifiers : 3.1
$\mu \mathrm{J}, 50 \mathrm{fs}$, I MHz
L. Daniault et al., Opt. Expr. 20, 21627 (2012)

V-Conclusion

A wide landscape

B. Hettel, Ultimate storage ring light sources, design and performances
objectives, USR Accelerator R\&D Workshop, Huairou (Beijing), China, October 30, 2012

V-Conclusion

A wide landscape

B. Hettel, Ultimate storage ring light sources, design and performances objectives, USR Accelerator R\&D Workshop, Huairou (Beijing), China, October 30, 2012

V-Conclusion

Conclusion

For the next 50 years

Sources complementarity and more flexibility on light source properties Further synergy / interplay with laser

- Storage ring based : mature, towards transverse coherence (USR) and tailored bunches but still rather long bunches and rather large energy spreads
- ERL :Test facility, towards X-ray user facilities

FEL provides longitudinal coherence in X -ray range

- Linac based SASE :

Now LCLS has acheived a 95\% photon avalaibility, equivalent to what is provided on synchrotron light sources
It evolves towards advanced «tailored» charactristics with muti-color, , adjustable polarisation, higher powers and energies...
harmonic production (to which number? when?)
Emergence of new accelerator schemes and related technologies need of demo experiments, improvement of stability and relaibility

+ New ideas.....

Overview of short wavelength FEL

	LCLS	LCLS II	Eu-XFEL	SACLA	FLASH	FLASH II	FERMI	SwissFEL	$\begin{aligned} & \text { PAL } \\ & \text { XFEL } \end{aligned}$	Shanghai XFEL	NGLS	MaRIE
Shortest wavelength	1.5A	$1 \AA$	0.5A	$1 \AA$	$40 \AA$	$40 \AA$	$40 \AA$	$1 \AA$	1 (0.6) \AA	$1 \AA$	$10 \AA$	0.3 A
Undulator type hard X-ray.	Fixed gap	Variable gap	Variable gap	Invacuum Var.gap	n.a.	n.a.	n.a.	Invacuum var. gap	Variable gap	Variable gap	n.a.	?
Undulator type soft X-ray.	n.a.	Variable gap	Variable gap	n.a.	Fixed gap	Variable gap	Apple II	Apple II	Apple II	?	Var. gap \& Apple	n.a.
Injector	S-band RF gun	S-band RF gun	L-band RFgun	Pulsed Diode	L-band RFgun	L-band RF gun	S-band RF gun	S-band RF gun	S-band RF gun	S-band RF gun	VHF c.w. RF Gun	?
Cathode	Cu	Cu	$\mathrm{Cs}_{2} \mathrm{Te}$	CeB_{6} (themionic)	$\mathrm{Cs}_{2} \mathrm{Te}$	$\mathrm{Cs}_{2} \mathrm{Te}$	Cu	Cu	Cu	Cu	$\mathrm{K}_{2} \mathrm{CsSb}$?
Main linac technology	n.c. Pulsed	n.c. pulsed	s.c. pulsed	n.c. pulsed	S.C. pulsed	S.C. pulsed	n.c. pulsed	n.c. pulsed	n.c. pulsed	n.c. pulsed	$\begin{aligned} & \text { s.c. } \\ & \text { c.w. } \end{aligned}$	n.c. pulsed
RF frequency	S-band	S-band	L-band	C-band	L-band	L-band	S-band	C-band	S-band	C-band	L-band	S-band
RF Rep. rate	120 Hz	120 Hz	10 Hz	60 Hz	10 Hz	10 Hz	$10-50 \mathrm{~Hz}$	100 Hz	120 Hz	60 Hz	n.a.	60 Hz
FEL pulses/RF pulse	1	1	2700	1	2700	2700	1	2	1	1	$1 \mathrm{MHz}$ c.w.	100
max. bunch charge	0.25 nC	0.25 nC	1 nC	0.2 nC	1 nC	1 nC	0.5 nC	0.2 nC	0.2 nC	0.2 nC	0.3nC	0.1 nC
max. electron energy	13.6 GeV	14 GeV	17.5 GeV	8 GeV	1.2 GeV	1.2 GeV	1.5 GeV	5.8 GeV	10 GeV	6.4 GeV	2.4 GeV	12 GeV
No. RF stations	81	81	29	69	5	5	15	34	49	?	?	?
Approx. facility length	1.7 km	1.7 km	3.4 km	0.8km	0.32 km	0.32 km	0.5 km	0.7 km	1.1 km	0.6 km	?	1.0 km
Startoperation	2009	2017	2015	2011	2005	2013	2010	2016	2015	2019	2023	?

towards high rep. rate LWFA based FEL

Towards 100 TW to PW laser peak power, with MW average power

 with an improve efficiency (target : 30%)G. Mourou et al.The future is fiber accelerator, Nature Photonics 7, 2013, 258

Reduction of the number of fibers by cavity enhancement

500 amplifiers combined
$200 \mu \mathrm{~J}$ / pulse / amplifier
$400 \mathrm{~W} /$ amplifier

T. Eidam et al., Fiber chirped---pulse amplitification system emitting 38 GW peak power, Optics Express 19, 255, (2010)
J. Limpert, EEAC workshop, ELBA, 2013

- Yb doped single mode fiber (fiber noise)
- $\mu \mathrm{m}$ precision fiber assembly
- fiber to fiber phase shift measurement : quadriwave lateral shearing interefrometer
- phase correction by optical modulator : 64 fibers locked in 201I!
- non linear effects phase locking of 8 fiber amplifiers : 3.I $\mu \mathrm{J}, 50 \mathrm{fs}$, I MHz
L. Daniault et al., Opt. Expr. 20, 21627 (2012)

Synchrotron Radiation

Astrophysics

The sun : Hydrogen, loops of magnetic field visible synchrotron radiation emitted in the center, X-ray on the edges

Particle accelerators

- Bending magnets in storage rings

- Undulators

Create a (quasi-) periodic (permament) magnetic field

[^0]: K. Balevski et al.

[^1]: K. Balevski et al.

