The use of Accelerators The development of state of the art accelerators is essential for many many fields of science (fundamental, applied or industrial) #### Research accelerators ■ Particle Physics, Nuclear Physics, Research fields using light source, Research fields using spallation neutron sources, Study of material for fusion, Study of transmutation... In past 50 years, about 1/3 of Physics Nobel Prizes are rewarding work based on or carried out with accelerators This « market » represents ~15 000 M€ for the next 15 years, i.e. ~1 000M€/year #### **Clinical accelerators** radiotherapy, electron therapy, hadron (proton/ion)therapy... **Industrial accelerators** • ion implanters, electron beam and X-ray irradiators, radioisotope production... This market represents ~3 000M€/year and is increasing at a rate of ~10% /year To be able to build future accelerators, a strong sustainable R&D programme is indispensible It includes 3 levels of R&D # Targeted R&D Demonstration of the Technical feasibility of all critical components Demonstration of the feasibility of fully engineered system # Industrialization R&D **Transfer of technology** Large scale production and cost optimization Diversification of Applications Exploratory R&D Assessment of new ideas Demonstration of conceptual feasibility of new and innovative principles It requires sustainability and large (costly) infrastructures We have to think at the European level, at least # Carrying the needed R&D requires The partners Large variety of infrastructures **Education & Training of accelerator scientists** Hard to find all this to cover all aspects of accelerator R&D in a single location or even a single country We have to think at the European level, at least # What is the role of EC projects in this landscape? ## **Round Table** | 15:50 | Role & goals of EC projects- a vision for Europe | Dr. MENNA, Mariano | |-------|--|--------------------------------| | 16:00 | View of project coordinator(s) | Dr. KOUTCHOUK, Jean-
Pierre | | 16:10 | View of CERN | Prof. ROSSI, Lucio | | 16:20 | View of a National lab | Dr. ASSMANN, Ralph
Wolfgang | | 16:30 | View of a university | Prof. WELSCH, Carsten | | 16:40 | View of ESGARD & TIARA | Dr ALEKSAN Roy | | 16:50 | View of an industrial partner | Dr. GRASSO, Gianni | | 17:00 | View of non EU partners (Japan) | Prof. TOKUSHUKU,
Katsuo | | 17:10 | Round table discussion | Dr ALEKSAN Roy | ESGARD mandate <u>develop and implement a</u> Strategy to optimize and enhance the outcome of the Research and Technical Development in the field of accelerator physics in Europe http://www.esgard.org This strategy led to the preparation and implementation of a coherent set of collaborative projects using the incentive funding of the 6th and 7th Framework Programme. EC projects are at the very heart of the ESGARD strategy for promoting and supporting Accelerator Science and Technology ### EC projects have been instrumental For collaborating, integrating, knowledge building and innovating - For fostering the community to carry out Accelerator R&D in a collaborative manner - For enabling smaller institutes/universities to gain knowledge and experience by collaborating with large institutes and to access world class infrastructures - For triggering new ideas and developing further novel concept, e.g. crab waist scheme, plasma acceleration - For allowing Europe to build expertise in domains where it was behind, e.g. Nb3Sn magnet, HTS links - For helping enabling the launch of large infrastructure project, e.g. linac4, ESS - For enabling coordinated and efficient means for a regionally balanced scientific and technological development. # Going beyond by implementing the Virtuous Triangle #### Test Infrastructure ———and #### Accelerator Research Area Creation of a coordinated <u>panEuropean multi-purpose</u> distributed Test Infrastructure Joint Strategic Analysis of the accelerator needs and perspective for the development of R&D RI Joint R&D programming and launching of a set of consistent integrated accelerator R&D projects integrating the needs of <u>all fields requiring accelerators</u> Promotion of the <u>education and training</u> for accelerator science Strengthening the <u>collaboration with the industry</u> to boost innovation (facilitating joint venture) **Enhance further Communication/Outreach** Simplification in EC management and reporting rules Integration of EC instruments in a single and large instrument including IA, DS, CNI-PP, NEST, MC grants Integrate the funding of innovation and technology transfer in the instrument above Build thrust with consortia and delegate them the organization of specific calls for projects #### **Conclusions** After having established an accelerator R&D strategy, implemented through several very successful projects in FP6 & FP7, it is proposed to go one step further in the integration of the Accerelaror R&D programme and infrastructure with TIARA TIARA will hopefully establish the groundbase for supporting sustainably Accelerator R&D and infrastructures in Europe through "program funding" in Horizon2020 Accelerator science is a powerful mean toward scientific, technical and industrial breakthroughs and innovations... TIARA will strengthen significantly this potential