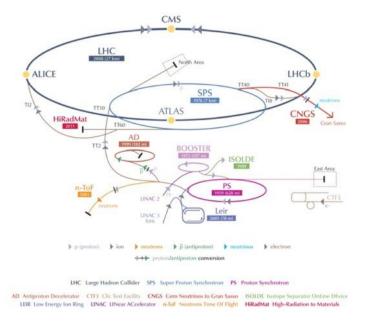


HiRadMat at the CERN SPS

A new powerful material test facility

Adrian Fabich

EuCARD'13 meeting CERN, 10th-14th June 2013



Purpose of HiRadMat

A. Fabich

High Radiation to Materials

- **Dedicated facility** designed, to **study the impact of intense pulsed beams** on materials
 - material damage
 - material vaporization
 - Thermal management
 - Radiation damage to materials
 - Thermal shock beam induced pressure waves
- Application areas:
 - materials R&D
 - high-power targetry
 - benchmark tests
 - (survival of) beam line components (windows, coating, vacuum)
 - detector R&D

- Beam testing almost independent of other accelerator activities at CERN
 - Dedicated space/tunnel for target area
 - **Dedicated primary beam exposure**

SPS beam parameters

LHC injection like beam

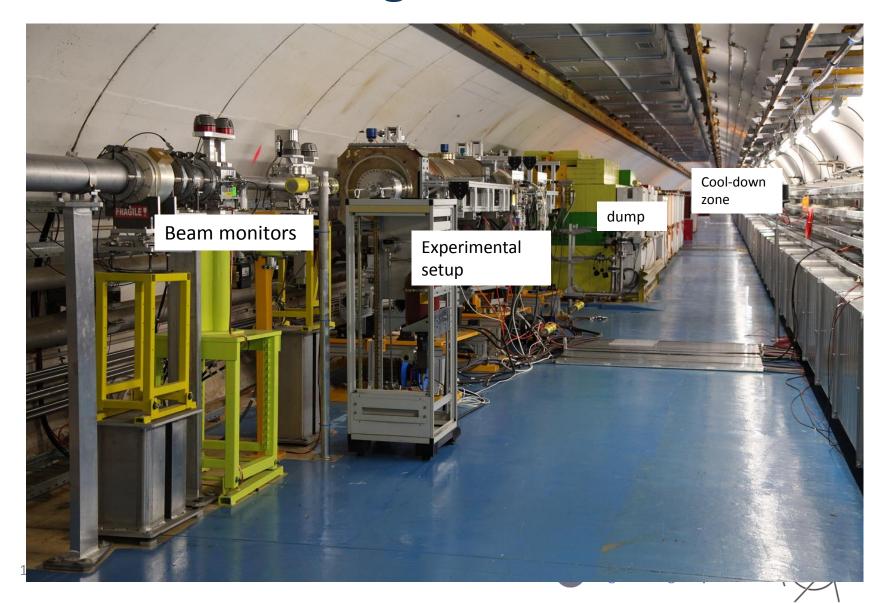
	Protons	Heavy ions (Pb82+)
Beam Energy	440 [GeV]	173 [GeV/u], 36.1 [TeV/ions]
Pulse energy	up to 3.4 [MJ]	up to 21 [kJ]
Bunch intensity	3×10^9 to 1.7×10^{11} [protons]	$3 \times 10^7 \text{ to } 7 \times 10^7 \text{ [ions]}$
Number of bunches	1 to 288	52
Max intensity	4.9×10^{11} [protons]	3.64×10^9 [protons]
Bunch length	11.24 [cm]	11.24 [cm]
Bunch spacing	25, 50, 75 or 150 [ns]	100 [ns]
Pulse length	7.2 [μs]	5.2 [μs]
Cycle length	18 [s]	13.2 [s]
Beam spot at the experiment	variable around 1 [mm²]	variable around 1 [mm²]

• Annual ion budget limited to $\sim 10^{16}$ pot.

Facility services

Provision of dedicated infrastructure

- Preparation lab
 - Same interfaces as in the tunnel
- Control room
- Irradiation position
 - Standardized installation (remote)
 - General supplies (water, electricity, cabling)
 - Beam monitoring
- Observation tools
 - Fast camera, LDV (EN/STI), BLMs (diamond)
- Application/installation at CERN
- Support in safety aspects



Target area

An Experiment in HiRadMat

Approval process for experiments

- Submit application for HiRadMat beam time (~August)
- Application = scientific interest (1-2 pages), pulse list, installation sketch, preliminary safety documents
- Initial discussion with Facility Management
- Feasibility of installation, compatibility with existing infrastructure
- Review by HiRadMat Scientific Board
- Evaluate the scientific interest of the experiment, feasibility, online and post-irradiation analysis, obtained results and publications
- establish experiment list for each running period ---> beam slot in the schedule
- From beam slot to scheduled beam schedule HiRadMat Technical Board
- safety review: interview with safety officials, safety file (includes dismantling)
- beam review: interview with beam operations and CCC
- technical review: interview with HiRadMat technical coordination
- positive recommendation of all above validates the beam slot allocation to the schedule

Beam time

Dismantling - analysis of results - feedback on publications to HiRadMat Scientific Board

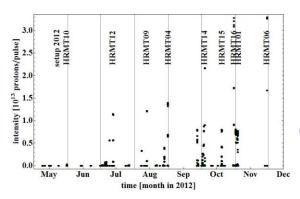
VISIT http://cern.ch/hiradmat

Facility upgrades in 2013

Based on experience gained during 2012:

- Extending the general infrastructure
 - Additional cables for signals, vacuum and 220V; to be installed in autumn 2013
- Fast trigger signal synchronous with the beam
- Adding a beam position monitor
 - High precision alignment to experimental tables
 - Based on pCVD diamond detectors
- Upgrading the fast camera system

Suggestions are welcome.



Outlook

- Call for new experiment proposals by summer 2013
 - Experiments need preparation time
 - For any discussions we are open right away!
- Upgrading the facility during SPS shutdown 2013/2014
- SPS beam will return after LS1: Protons in autumn 2014, Argon ions early 2015

Continue the success of 2012!

HiRadMat is participant to the EUCARD² Transnational Access program - some financial support to experiments available.

