

BSCCO 2212 precursor at Nexans:

Current Status and Further Development within EuCARD2

Mark Rikel

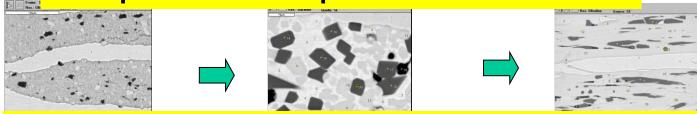
Jürgen Ehrenberg, Achim Hobl, Joachim Bock

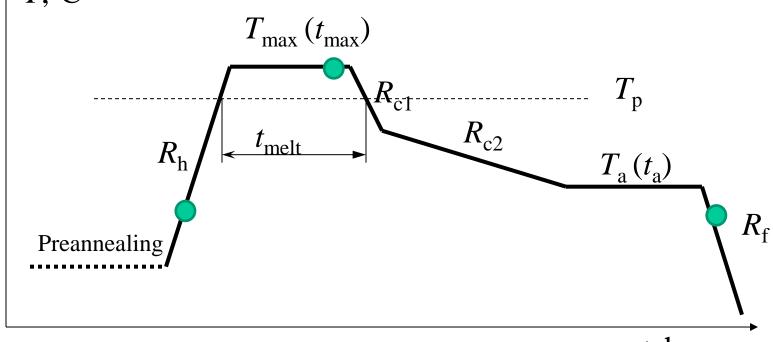
Acknowledgements

- Eric Hellstrom, David Larbalestier, Jianyi Jiang, Fumetaki
 Kametani (ASC @ NHMFL); Dan Wesolowski (now at Sandia)
- Christian-Eric Bruzek, Arnaud Allais (Nexans France);
 S-C. Kim (Nexans Korea)
- Ken Marken (now at DOE), Hanping Miao, Yibing Huang, Seung Hong (OST)
- Christian Scheuerlein, Amalia Balarino, Luca Botura (CERN);
 Mario Scheel, Marco Di Michiel (ESRF)
- Tengming Shen, Pei Li, Lance Cooley (FNAL)
- Rene Deul, Lisa Koliotassis, Alexis Camus, Simon Krämer, Andreas Klimt, Zemfira Abdoulaeva, Werner Horst (NSC)

- Requirements on Precursor for Ag-sheathed Bi2212 conductors
- Bi2212 precursor technology at Nexans
 - Equilibrium Precursor: Development, Current Status, and Quality
- Major Open Issues
 - Granulated versus Powdered Precursor
 - Optimum cation composition and optimum O contents
- Work within EUCARD2
 - Supplying high-quality precursor to OST.
 - Optimize granulated precursor
 density homogeneity in granulate; optimum particle size window
 - Optimizing composition including O contents as variable
 - Stabilizing the industrial process for optimum composition

Requirements on Bi2212 precursor


- General for OPIT process
 - Homogeneity
 - Size of hard particles much smaller than filament size
 - Filling / Tapping density to ensure necessray fill factors
 - Flowability.....
- Specific for Partial Melt Processing of Bi2212
 - Low C and H₂O contents to avoid bubbling
 - Equilibration state :

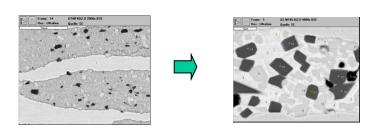


Why Precursor matters for Bi2212 Partial Melt Processing?

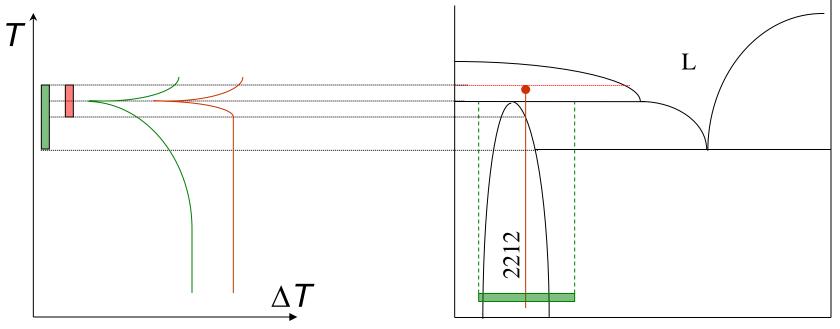
Final performance depends on the initial state

The initial state of precursor predetermines the extent of PHASE SEPARATION during the partial melting step

Requirements on Bi2212 precursor


- General for OPIT process
 - Homogeneity
 - Size of hard particles much smaller than filament size
 - Filling / Tapping density
 - Flowability.....
- Specific for Partial Melt Processing of Bi2212
 - C contents
 - Equilibration state that minimizes
 PHASE SEPARATION during partial melting

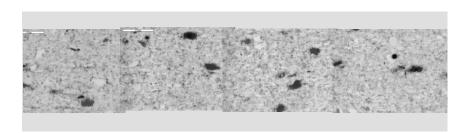
٠.



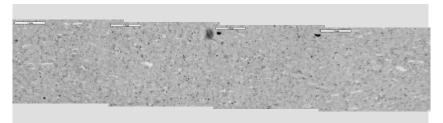
Concept of EQUILIBRIUM precursor

Minimize PHASE SEPARATION by

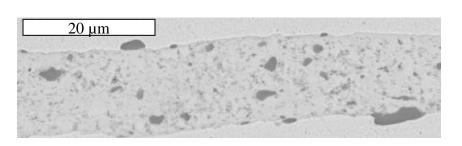
- choosing proper composition;
- making precursor as close to EQUILIBRIUM as possible

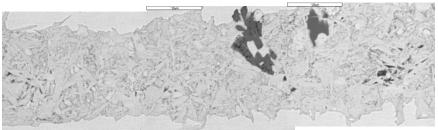


Equilibrium vs Non-Equilibrium Precursors: 1. Proof-of-Principle


Equilibrium

Green Tapes


Non-Equilibrium



looks more uniform in the Green tape

Tapes after heating close to melting (864°C)

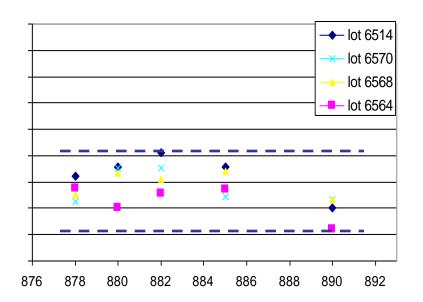
is more uniform close to melting

Equilibrium vs Non-Equilibrium Precursors: 2. Jc (OST results 2002-2003)

A factor of 3 better performance (dip-coated tapes)

Dip Coated Jc optimization in Nexans Equilibrium Lots 4500 $Jc(4.2K, sf), A/mm^2$ 4000 3500 3000 2500 2000 ◆ Ox-I 1500 Ox-II ▲ Ox-III 1000 Ox-IV → Ox-V 500 Ox-VI

888


890

892

894

896

non - Equilibrium powder evaluation

Superconducting Technology

882

884

886

Equilibrium vs Non-Equilibrium Precursors: 3. Reproducibility in short samples

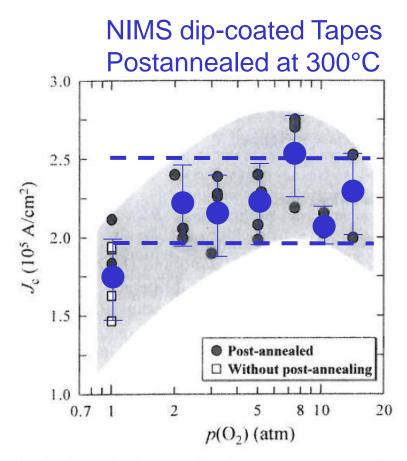
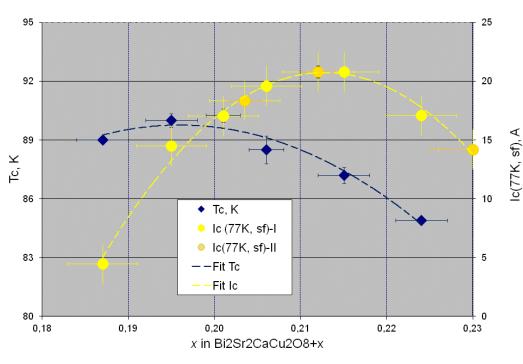
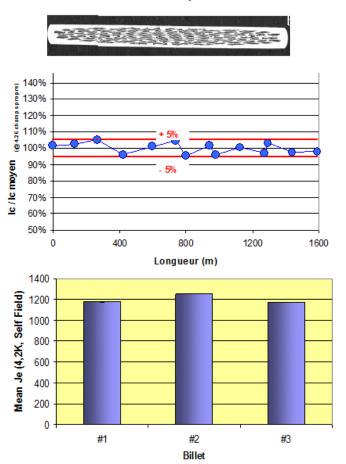
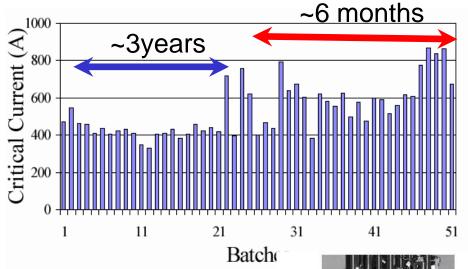



Fig. 2. Correlation between the $p(O_2)$ at the post-annealing process and the J_c value in 10 T at 4.2 K.

Nakane et al (2004), Physica C 412-414, 1163-6

OST wire PMM110106


Rikel et al (2012) ASC, Portland


Equilibrium vs Non-Equilibrium Precursors: 4. Industrial Reproducibility

Nexans experience

C.E.Bruzek et al EUCAS 2003 ASC 2004

OST experience

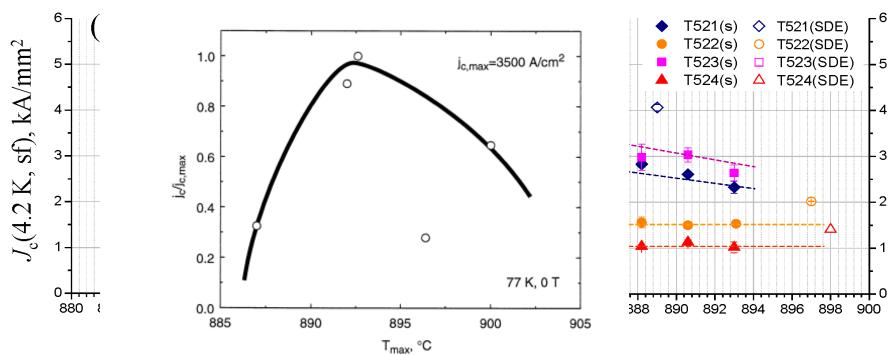
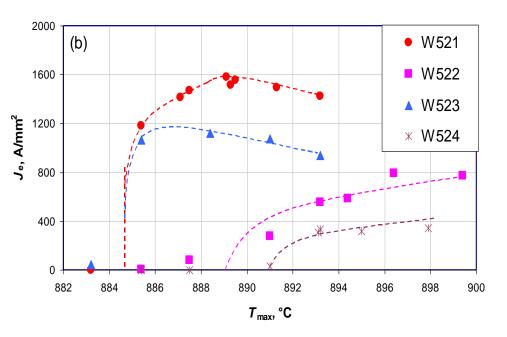
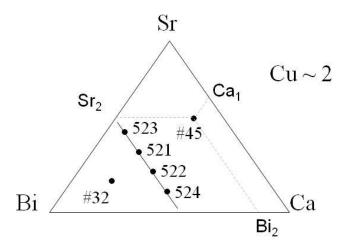

K. R. Marken et al, ICMC 2003

FIGURE 2. The 5 tesla insert magnet which achieved 25 T central field.

Equilibrium vs Non-Equilibrium Precursors: 5. Step like Jc vs Tm

Very uniform distribution of melting point over macroscopic


lengths the normalized c field of fully proc in the same furn maximum j_c was Lang et al


%Bi

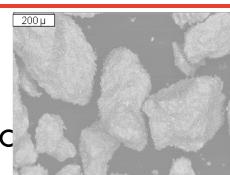
Equilibrium vs Non-Equilibrium Precursors. 6. Effect of Cation Composition

W521-524 2.14: (2.86-x): x:2.00 Sr/Ca = 2.25, 2.18, 1.75, 1.34

H. Miao et al 2006 *Adv Cryo En*g. **52B**, p. 673, (2006) [Proc. ICMC 2005] M. Rikel et al 2006 *J Phys: Conf Ser.*, **43** (2006) 51–54 [Proc. EUCAS 2005]

 Why overall composition of Bi2212 has such a strong effect on performance of round wires and tapes?

Equilibrium Precursor Technology (EP 1 659 104 B1)


- Characterization // Conditioning of Raw Materials
- Mixing oxides
- Melt Casting oxide mixtures
 Melt Quenching // Spray drying
- Thermomechanical processing to reach equilibrium and control size of second phases
 Annealing – Jet Milling – Compacting – Annealing –
- Final Product:
 - Powder or Pressed Rods
 - Granulate

Granulated Precursor

 Introduced to solve the problem of high C contents can be annealed at higher T than powder to decompose SrCC

- Advantages
 - > Lower C contents attainable
 - > Fill factors intermediate between powder and rods
 - > Flowability better than that of powder
 - > Easy filling the billets (no sticking to tools)
 - > Better Jc achieved by Nexans (France & Korea), Supercon, Supramagnetics, but not OST, where Jc were in average ~10% worse.

Precursor Technology Development

- Equilibrium Rods/Powder (2002-2004)
 - Nexans SMES project (~ 400 kg precursor)
 - OST 25 T magnet project + R&D (~50 kg)
- Collaboration with OST on optimizing precursor composition (2004-2005)
 - $Bi_{2.17}Sr_{1.94}Ca_{0.89}Cu_{2.00}$ cation composition (Lot 521) = Nexans Standard
- Granulated Precursor (2005-2006)

Quality Control

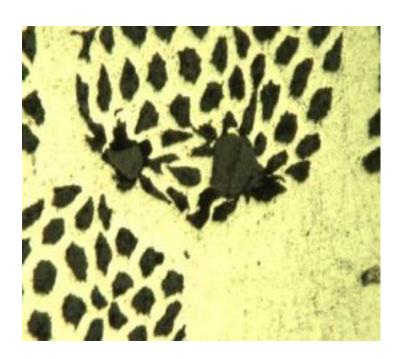
Attribute	Target Levels	Test
Cation Composition	Bi : Sr : Ca : Cu	XFA
	2.16 : 1.95 : 0.89 : 2.00	
	± 0.03 : 0.03 : 0.015: 0.03	
Cation Impurities	H: < 50 ppm	IR for H
	Fe: < 50 ppm (?) Zn: < 20 ppm	ICP
Carbon	20 - 50 ppm for granulate	IR Leco
	50-150 ppm for powder	
Grain Size d: 10, 50, 90	d10 < 0.5 μm; d50 < 2 μm; d90 < 5 μm	Laser granulometry
Fill density : g/cm³	1.5 (powder) to 1.9-2.5 (granulate)	weight
Melting Temperature, with Ag	Onset in 100% O2: 883 ±2°C	DTA/TGA
Phase State	Phase composition should correspond to	2theta XRD
	equilibrium state for a given overall composition	Rietveld Refinement
Extent of equilibration	Fraction of intergrowths in 2212 phase < 1%	2theta XRD
Particle size (granulate)	100-500 μm (empirical)	sieving
Storage and shipment	Dry, $< 10^{-5}$ at static P_{H2O} , P_{CO2}	Monitor & record: sensors

Questions to be addressed

Attribute	Target Levels	Test	
Cation Composition	Bi : Sr : Ca : Cu	XFA	
	2.16: 1.95: 0.89: 2.00		
	$\pm0.03:0.03:0.015:0.03$ Is this sufficient?		
Cation Impurities	H: < 50 ppm	IR for H	
	Fe: < 50 ppm (?) Zn: < 20 ppm	ICP	
Carbon	20 - 50 ppm for granulate	IR Leco	
	50-150 ppm for powder		
Grain Size d: 10, 50, 90	d10 < 0.5 μm; d50 < 2 μm; d90 < 5 μm	Laser granulometry	
Fill density : g/cm³	1.5±0.2 (powder) to 1.8-2.5 (granulate)	weight	
Melting Temperature, with Ag	Onset in 100% O2: 883 ±2°C	DTA/TGA	
	How to control low temperature event?		
Phase State	Phase composition should correspond to	2theta XRD	
	equilibrium state for a given overall composition	Rietveld Refinement	
Extent of equilibration	Fraction of intergrowths in 2212 phase < 1%?	2theta XRD	
Particle size (granulate)	Particle size window	Sieving, OM, SEM	
Storage and shipment	Dry, < 10 ⁻⁵ at ? static P _{H2O} , P _{CO2}	Monitor & record: sensors	

- Requirements on Precursor for Ag-sheathed Bi2212 conductors
- Bi2212 precursor technology at Nexans
 - Equilibrium Precursor: Development, Current Status, and Quality
- Granulated versus Powdered Precursor
- Optimum cation composition and optimum O contents
- Work within EUCARD2
 - Supplying high-quality precursor to OST.
 - Optimize granulated precursor
 - optimum particle size window; density homogeneity in granulate
 - Optimizing composition including O contents as variable
 - Stabilizing the industrial process for optimum composition

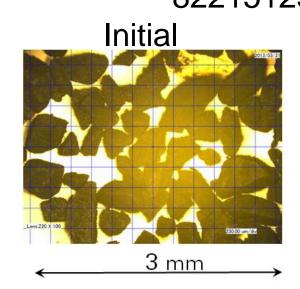
Outline



- Requirements on Precursor for Ag-sheathed Bi2212 conductors
- Bi2212 precursor technology at Nexans
 - Equilibrium Precursor: Development, Current Status, and Quality
- Open Issues
 - Granulated versus Powdered Precursor
 - Optimum cation composition and optimum O contents
- Work within EUCARD2
 - Granulated precursor: density homogeneity in granulate; optimum particle size window.
 - Optimizing composition including O contents as variable
 Stabilizing the industrial process for optimum composition

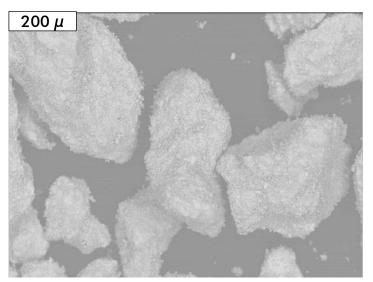
Why Granulated Precursor shows 10% worse perfromance? New Data from OST

 Hard Bi2212 particles forming when drawing wires made using granulates 78 and 80 (small powder batches), but not 77 (large batch)

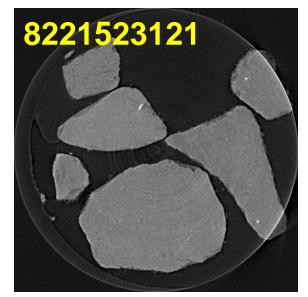


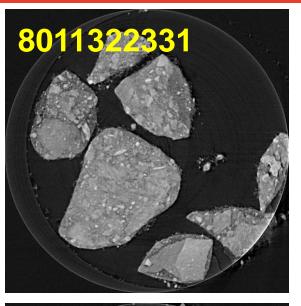
Formation of Hard Particles. Two Hypotheses

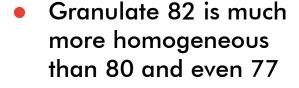
Formation of hard particles may stem from too broad particle size distribution or reflect density inhomogeneity in the granules due to


- using different compacting technologies
- multiple compaction steps necessary for the required yield when using small powder batches
- Quick test: Uniformity of granule response to small loads (1 to 50 bar)
 82215123121 (200-500 µm)

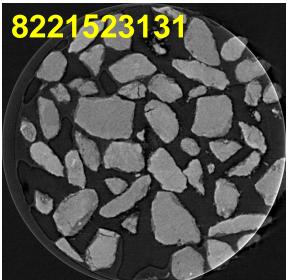
8011322331 (100-500 μm)
Initial After ~3 bar load






Old lot 80 seems less homogeneous than new lot 82

√exans


Confirmation by μ -CT from ESRF

 Inhomogeneity of lot 77 may come not from compacting but from exposure of the 3.5-year old material to environment

77162164

C. Scheuerlein et al (2013)

June 14, 2013

First Tasks within EUCARD2

Task 1. Production of BSCC02212 precursor granulate

Subtask 1.1. Production

10 kg standard (521-like) composition

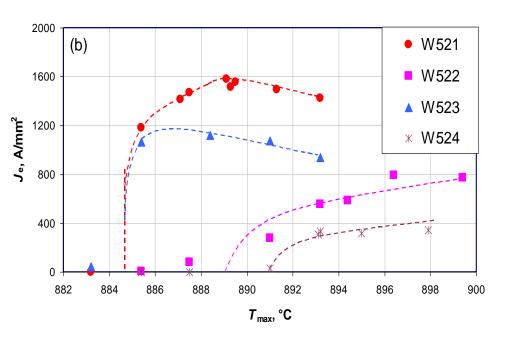
Subtask 1.2. Effect of particle size in the granulate on processing BSCCO2212 round wires

Goals:

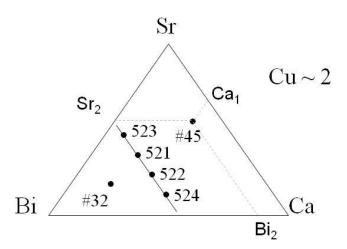
Optimize the particle size window

The precursor produced in subtask 1.1 will be classified in fractions with various particle size windows, e.g.,

- powder
- 200-500 µm [standard]
- 100 to 200 µm,
- 50 to 100 μm

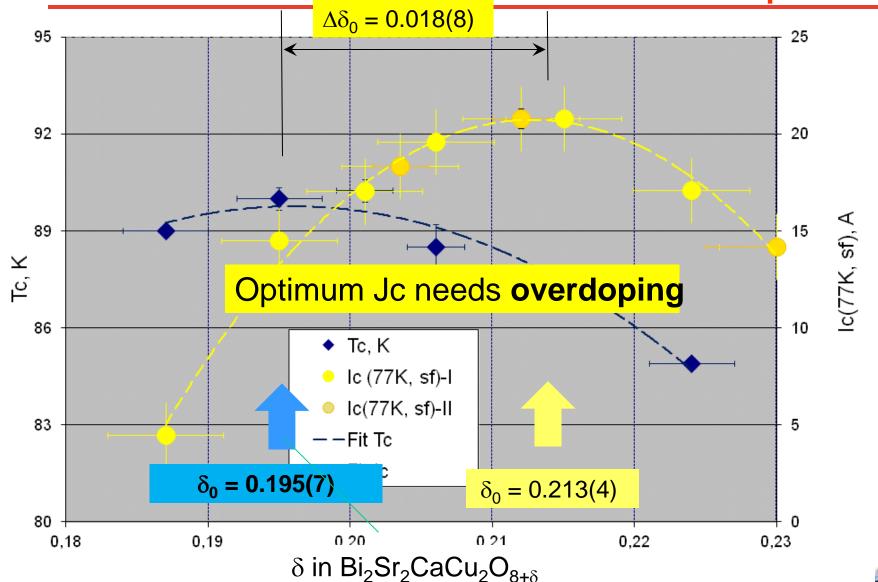

Task 2. Compositional studies:

Subtask 2.1. Preliminary studies of BSCCO2212 bulk with various Sr/Ca ratio and O contents

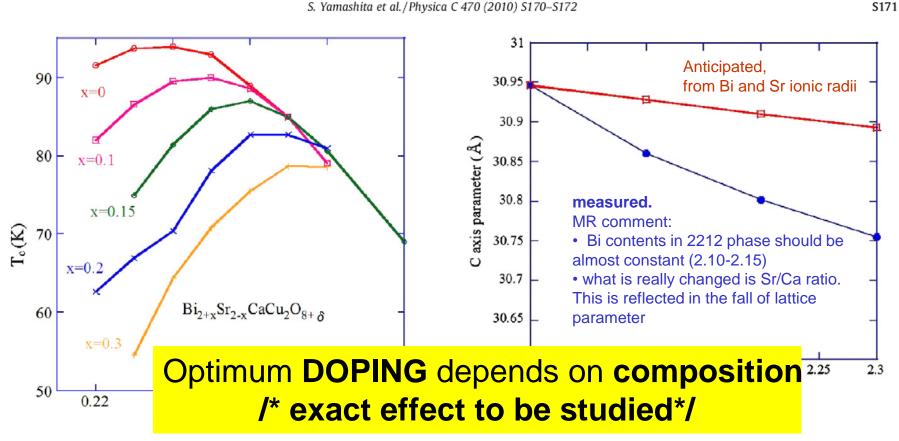


Effect of Cation Composition on Wire Perfromance

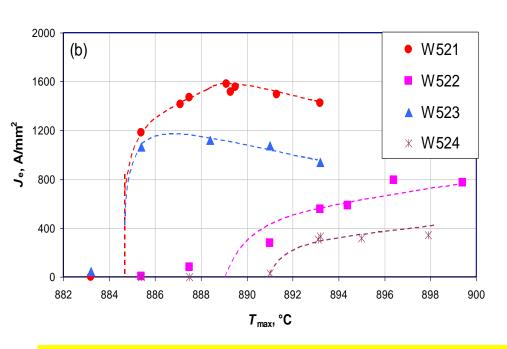
W521-524 2.14: (2.86-x): x:2.00 Sr/Ca = 2.25, 2.18, 1.75, 1.34

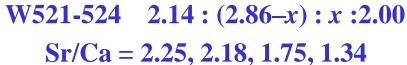

H. Miao et al 2006 *Adv Cryo En*g. **52B**, p. 673, (2006) [Proc. ICMC 2005] M. Rikel et al 2006 *J Phys: Conf Ser.*, **43** (2006) 51–54 [Proc. EUCAS 2005]

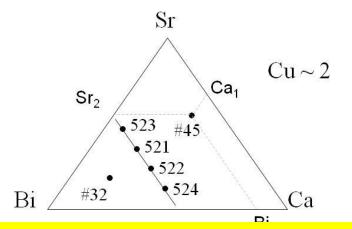
 Why overall composition of Bi2212 has such a strong effect on performance of round wires and tapes?



Tc & Ic vs δ in OST RW BSCCO of 521 composition


Data of Yamashita et al (2010)




Yamashita et al (2010) studied single crystals grown from powders of $B_{i2+x}Sr_{2-x}Ca_1Cu_2$ cation compositions and annealed to have various O contents. They found that the crystals with smaller Sr/Ca ratio have maximum Tc at stronger overdoping levels. Though the real compositions were not measured, the Sr/Ca ratio in the 2212 phase should scale with that in the overall composition (Rikel et al 2006). Thus, our observation that maximum of $Jc(\delta)$ in round wires is at higher δ than in the bulk may stem from the difference in $T_c(\delta)$ for bulk (Sr/Ca = 2.45±0.02) and round wire (Sr/Ca = 2.20±0.03). We should first measure Tc of the wires.

Effect of Cation Composition on Wire Performance

What is the contribution of O doping level in the Jc difference?

M. Rikel et al 2006 J Phys: Cont Ser., 43 (2006) 51-54 [Proc. EUCAS 2005]

 Why overall composition of Bi2212 has such a strong effect on performance of round wires and tapes?

Preliminary Compositional Studies of Bulk Samples. Current Status and Nearest Plans

• Bulk rods (5 and 8 mm diameter) of $Bi_{2.15}Sr_{2.85-x}Ca_xCu_{2.00}O_{8+\delta}$ compositions Melt Cast

Sr/Ca	X(*)	$\delta_{\sf optimum}$ for	
		Tc ^(a)	Jc(77 K,sf)
2.47	0.82	0.190(5)	0.203(3)
2.18	0.90	0.195(7)	0.214(3)
1.76	1.03	0.225	5
1.34	1.22	0.240	?

(*) will be checked by XFA after homogenization

- DTA/TGA done. Heat Treatment designed. Samples processed
- XRD and SEM/EDX in progress
- Dip-Coated Tapes 521-524 (from OST and NSC) sent to FNAL (Tengming Shen) for Partial Melt Processing
- Samples, Bulk Rods & Tapes (if possible) will be annealed at NSC to vary δ from 0.180 to 0.250
- Tc & M(T,B) will be studied to choose NEW COMPOSITION for testing in wire

- Supplying high-quality precursor to OST
- Optimizing composition including O contents as variable
- Stabilizing the industrial process for optimum composition

Thank you