

BERKELEY LAB

LBNL work on Bi-2212 and US-CDP Plans

Daniel R. Dietderich and A. Godeke Lawrence Berkeley National Laboratory, Berkeley, CA, USA

> EuCARD 2 CERN, June 15, 2013

This work was partly supported by the Director, Office of Science, High Energy Physics, U.S. Department of Energy under contract No. DE-AC02-05CH11231

Outline

- Motivation for development of Bi-2212 wire and magnet technology
- Progress on Bi-2212 magnet technology
- Bi-2212 conductor improvement and limitations
- Future plans for conductor and magnet design

Motivation: Higher fields require HTS materials

Godeke et al., to be published (2012)

Bore field in dipoles versus wire J_e

Bi-2212 technology status

'Best of breed' so far: HTS-SC08

After reaction: Minor leakage (5 spots/side)

Coil performance, 4.2 K, self-field (~1 T)

Coil performance

- Coil achieves 85% of round wire witness
- Limited by inner turns and ramp
- HTS-SC10: 2417 A (within 10%)

W&R Bi-2212 is realistic

Pending issues

- Increase wire J_e by factor 3 4
- Coil homogeneity (inner turns limit)
- Stress-strain sensitivity Bi-2212
- 🖌 Leakage
- Further compatibility studies
- ¥ Quench protection(?)
 - Materials compatibility

Bi-2212 dipole technology at LBNL

😥 2001 😰 2002 😰 2003 😰 2004 😰 2005 😰 2006 😰 2007 😰 2008 😰 2009 😰 2010 🔯 2011 🔯 2012 🏚

2000

1998

1999

 \Box

Rutherford cable developments (with IGC, OST, Showa > 4.5 km SMES cable)

Beyond 16 T dipole fields

- Optimize and refine Nb₃Sn
- Develop W&R Bi-2212
- Collaborations Leading roles for LBNL
 SWCC Sheet
 - OST Oxford Instruments
 - VHFSMC U.S. National Program on Bi-2212
 - » BNL, FNAL, FSU, LBNL, NCSU, NIST, TAMU
 - BSCCo U.S. collaboration on Bi-2212
 - » BNL, FNAL, FSU, LBNL (+OST, CERN, Nexans)
- Side path: YBCO, Bi-2223, ...

W&R Bi-2212 racetracks with Showa and OST Reach 85% of RW along loadline => Technology OK

2006 – 2012: Bi-2212 subscale coils

- Purchase wire, make and insulate cable
- Coil on Inconel 600 former, react, pot, test
- 2 Ag dummies & 11 Bi-2212 coils to-date

2013 onwards: Bi-2212 dipole inserts

Low strain, high J_e insert for HD3

Bi-2212 is an enabler for MAP and HE-LHC

Stress and Strain Sensitivity of Bi-2212

Transverse loading on Rutherford cable

- Ic reduction at 60 MPa
- 20 T dipole inserts: 150+ MPa
 - Likely more

Required I_c through overpressure reaction

- 888 ± 1°C, 99:1 bar Ar:O₂ → > 600 A/mm² @ 20 T
- ...but only 0.3 0.4% reversible strain range

Over Pressure Processed Wire

- 3 times more current (8 cm)
 - Composition not yet optimum
 - Still need long lengths of conductor
- However no improvement in strain tolerance

Bore field in dipoles versus wire J_e

New Coil Concept to limit stress -- CCT

- Canted Cosine-Theta (CCT) made from laminations
- Potential for CTE machining to conductor
 - S. Caspi, et al.

Nuclear Instruments and Methods in Physics Research A 719 (2013) 44-49

Conductor Development Program

Ken Marken – DOE Daniel Dietderich (manager) – LBNL

CDP Advisory Board

- BNL Arup Ghosh
- FNAL Giorgio Ambrosio, Lance Cooley
- FSU David Larbalestier, Peter Lee
- LBNL Arno Godeke
- TAMU Al McInturff

Funds received from DOE

- Request proposals
- CDP Management provides Task guidelines
- Advisory Board reviews proposals
- · Tasks are deemed most important for HEP
- OST delivers wire and reports
- Characterization is performed on wire by BNL, LBNL and NIST

Wire available to HEP magnet programs

CDP steers core US Conductor Development based on HEP magnet needs

CDP has driven Nb₃Sn J_c to >3000 A/mm²

• Enables high field magnets and LARP

CDP – Bi-2212

- Majority of funds still focusing on issues with Nb₃Sn for Hi-Lumi
- CDP has invested in Bi-2212 for several years and the investment will grow over the next 2-3 years
- Presently supporting fabrication of 3 billets at Oxford Superconducting Technologies
- Funds are available for near term Bi-2212 R&D

Summary

• The critical current is now at a level useful for high field magnets (~600 A/mm²)

- However, still need long lengths of Bi-2212 conductor
- Still need to improve insulation and materials compatibility
- Controlling the stress on the conductor is the dominate issue in high field magnets of Bi-2212 -- (< 50 MPa 100MPa?)
 - Use of the Canted Cosine-Theta (CCT) coil design address this issue