

Bi-2212 Round Wire Performance Continuous Improvement

OST, EUcard2

CERN, June 14, 2013

Acknowledgements

- U.S. DOE VHFSMC, High Energy Physics CDP, BSCCo & SBIR programs
- ASC Florida State University, Lawrence Berkeley National Laboratory
 Fermi National Accelerator Laboratory and Brookhaven National Laboratory

Mono-core wire densification by swaging

The Business of Science®

Quenched samples right after melt treatment at 890°C

Quenched from melt as-drawn mono filament, initial core density ~70%

Quenched from melt swaged mono filament, initial core density ~90%

Pictures courtesy of ASC/FSU

- Large bubbles in as-drawn mono filament
- No obviously large gas bubbles in the swaged filament

J_E improvement by swaging

The Business of Science®

The best J_E value is > 480 A/mm² at 15 T by swaging

J_E improvement by CIPing up to 150 ksi

The Business of Science®

Core densification result in double J_E values to ~470 A/mm² at 15 T

J_E improvement by Over-pressure treatment

The Business of Science®

Over Pressure Heat Treatment (10 bar by ASC/FSU)

"Close ends" simulates long length as in a coil

- "Over pressure HT" is to prevent the leakage
- "Core densification + over pressure HT" achieve J_E values to ~550 A/mm² at 15 T in 10 bar and meter barrel samples with close ends

State of art OST wire J_F

The Business of Science®

Engineering critical current density (J_E) @ 4.2K&15T, 1.2m sample by leak-free process

Wire performance continue improving with leakage under control

OST wire can be twisted without degradation!

The Business of Science®

• Bi-2212 wire can be twisted to 12 mm without significant J_E degradation.

OST round 2212 wire is made in multiple conductor architectures

The Business of Science®

Wire configuration (sub filament number x sub bundle number)	Wire diameter range (mm) @Optimum J _E 4.2K & 15T
19 x 36	0.7 - 1.0
37 x 18	0.7 - 1.0
85 x 18	1.0 - 1.2
121 x 18	1.2 - 1.5

 Various wire configurations to fit different application requirements-Cable (0.8-1.0 mm) and insert Coil (1.0-1.5 mm)

OST coil performance (2009)

The Business of Science®

- No leakage in the coil with over hundred meter long wire
- Additional 2.25 T generated at 20T background field
- Ic reduction on longer length
 - Lower Ic in coil (15~20%) than the witness sample
 - $J_F \sim 200 \text{ A/mm}^2 \text{ at } 15\text{T}$

14 layer coil: 70 od x 25 id x 100 (mm) long

Summary

The Business of Science®

- ❖ OST consistently develop Bi-2212 tape and wire more than 15 years.
- ❖ Bi-2212 round wires are fabricated by the standard power-in-tube process
- Wires performance is meeting application requirement s by OP process
- Wire is twistable without Ic degradation
- Various configuration designs for different application

- > Bi-2212 round wire could be fabricated by conventional technology
- > Many configurations for different applications
- > Easy to adapt Nb₃Sn well developed technology.

...