

Prospects for fast ramping superconducting magnets (trans. Lines, FAIR, SPS+, VHE-LHC LER)

P.Fabbricatore

INFN-Genova, Italy

Starting from the development of the fast cycled dipole magnets for FAIR SIS300, some information and considerations for the development of future fast ramped superconducting magnets

This presentation is based on the work of many colleagues of INFN working in the **DISCORAP** project (Milano LASA and Napoli)

INFN DISCO_RAP project Development of SIS300 fast cycled and curved magnet

TABLE I MAIN REQUIREMENTS OF SIS300 SHORT DIPOLESNominal Field (T) :4.5Ramp rate (T/s)1Radius of magnet geometrical curvature (m)66 2/3Magnetic Length (m)3.879Bending angle (deg)3 1/3Coil aperture (mm)100Max operating temperature (K)4.7

TABLE II MAIN CARACTERISTICS OF THE MODEL MAGNET

Block number	5
Turn number/quadrant	34 (17+9+4+2+2)
Operating current (A)	8920
Yoke inner radius (mm)	96.85
Yoke outer radius (mm)	240.00
Peak field on conductor	4.90
(with self field) (T)	
B _{peak} / B _o	1.09
Working point on load line	69%
Current sharing temperature (K)	5.69

A 4 m long model (indeed a prototype) has been designed by INFN, constructed (at ASG Superconductors) and tested at INFN LASA

Criticities of SIS300 dipoles

Requirement 1: Target : Needed R&D: Design issues: Ramp 1T/s \rightarrow ac losses 10 W/m @4.7 K max losses in ramping conditions Development of a low loss conductor Minimization of eddy currents in structures Low magnetic loss yoke

Requirement 2: Consequences: Open problems: 10⁷ cycles → Fatigue
Mechanical design and materials optimization
Not easy checking the achievement of the requirement

Requirement 3: Consequences: Geometrical Curvature R=66.667 m (sagitta 117 mm) Many design and constructive problems

Results from the R&D and lessons learned Superconducting wire (INFN-Luvata design)

	Specified	Obtained	Comment
Diameter after surface coating (mm)	0.825 ± 0.003	Ok	
Filament twist pitch (mm)	5 +0.5 -0	6.6	5 mm obtainable
Effective filament diameter for 1^{st} generation wire (µm)	3.5	~3.2	Filament deformations
Effective filament diameter for 2 nd generation wire(µm)	2.5	~3.2	
<i>I_c</i> @ 5 T, 4.22 K (A)	> 541	470 1 st 520 2 nd	Breakages during manufacturing in
<i>n</i> -index @ 5 T, 4.22 K	> 30	32	2 nd generation
Stabilization matrix	Pure Cu		
Strand transverse resistivity at 4.22 K (nΩm) (Cu-0.5 wt% Mn involved)	0.43 + 0.09 B [T]	0.3 1 st 0.4 2 nd	
Cu+CuMn:NbTi ratio (α ratio)	>1.5	ok	
Surface coating material	Staybrite (Sn-5 wt% Ag)	ok	
Surface coating thickness <i>d</i>	0.5	ok	

Superconducting cable

	Specified	Obtained
Strand Number	36	ok
Width	15.10 +0 -0.020	ok
Thickness, thin edge	1.362 ± 0.006	ok
Thickness, thick edge	1.598 ± 0.006	ok
Core material	AISI 316 L stainless steel, annealed	ok
Core width	13	ok
Core thickness	25	ok
$I_c @ 5 \text{ T}, 4.22 \text{ K} (\text{A})$	18450	16000 1 st 17600 2 nd

The cable development is not yet finished. New wires and cables are under development. Filament (partly) deformation, critical current and breakages during manufacturing are the main issues. However .. a low loss cable exists till now and can be used for ramped magnets.

Some interesting features about the developed sc wires

Magnet cold test

40.0

Excellent training

35.0 30.0 25.0 20.0 15.0 10.0 Bo=1.5 T Bo=3.0 T Bo=4.5 T 01/10/2012 10.0 02/10/2012 5.0 03/10/2012 0.0 0 0.2 0.6 0.8 0.4 1 dBo/dt (T/s)

Apparently ac low losses (calorimetric) From analysis of electrical signal, the losses comparable with expectations

Some problems of premature quench for large field sweep (> 4000 A)

Complete results to be presented at MT-23 Boston by G.Volpini and M.Sorbi

Conclusions on DISCO_RAP R&D

The results of DISCO_RAP project show that a big step has been done towards the developments of fast cycled (and curved) magnets. Though some aspects of the mechanics (related to the geometrical curvature) are not yet fully understood, some problems have been found related to premature quenching when ramping the coil and the conductor could need further developments, the key technologies are almost available <u>at</u> industrial level and we are now ready to move forward

Future An example: a new injector for HE-LHC

Any discussion about the ac losses should start from the field cycle

For FAIR SIS300, 6s ramps up and down Duty cycle 50% For injector let's consider... Duty cycle 50%

Ac losses in the	SIS300 4.5T 100mm bore		LHC injector 4T 100mm bor		
magnet body (no end coils	Total loss when ramping from 1.5T to 4.5T at 1 T/s:		Total loss when ramping from 0.4 T to 4.0T		
contribution)			at 1 T/s or 1.5		or 1.5 T/s:
		7.7 [W/m]	8.26 [W/m] ·	- 15.5 [W/m]	
Hysteresis	30 %	D _{fil effect} =3.5 μ m (2.5 μ m geom. 3 μ m eff.)	38%	30%	
Coupling Strand	9 %	CuMn $\rho_t = 0.43 \text{ n}\Omega \cdot \text{m}$ lp 5 mm (6.7 mm)	9%	11%	
Interstrand Ra+Rc	6 %	Cored cable	6%	7%	
Total conductor	(45 %)		(53%)	(48%)	
Collars + Yoke eddy + <u>Prot. sheets</u>	6 %	Collar 3 mm tick Iron 1 mm tick	6%	7%	
Yoke magn	24%	H_c (A/m)=35	19%	17%	
Beam pipe	14 %	$\frac{\pi}{2}\dot{B}_{a}^{2}\cdot r^{3}\cdot \Delta r$	11%	14%	
Collar-Keys-Pins	8 %	$\rho_0 = \frac{1}{\rho_0} \frac{1}{\rho_0$	8%	10%	
Yoke-Keys-Pins	3 %		3%	4%	

Margins for improvements

Improve filament quality. Goal Jc(5T,4.22K) = 3000 A/mm2 with filaments of effective diameter 2 μ m

Better control of the transverse resistivity. Designed 0.44 n Ω m, obtained 0.4 n Ω m (presumably due to the filament deformation).

G. Volpini et al., "Low-Loss NbTi Rutherford Cable for Application to the SIS-300 Dipole Magnet Prototype"; IEEE Trans. Appl. Supercond., 18, Issue 2, June 2008 pp 997-1000

Decrease strand twist pitch. Measurements done during the R&D demonstrated that we can get values as low as 5 mm or less (4 mm)

• Use of electrical steel with lower coercitive field (30 A/m)

4

- Coil protection sheets in insulating material
- Decrease as possible eddy currents in the systems collarkeys and yoke-keys

Pushing forward	LHC injector 4T 100mm bore		
both design and technology	Total loss when ramping from 0.4 T to 4.0T at 1.5 T/s:		
	11.5 [W/m]		
Hysteresis	34 %	$D_{fil effect} = 2 \mu m$	
Coupling Strand	7 %	$CuMn \rho_t = 0.43 n\Omega \cdot m$ $l_p = 4 mm$	
Interstrand Ra+Rc	8 %	Cored cable	
Total conductor	(49 %)		
Collars + Yoke eddy + <u>Prot. sheets</u>	1 %	Insulated Prot. sheets	
Yoke magn	20 %	H_c (A/m)=30	
Beam pipe	19 %	-	
Collar-Keys-Pins	8 %	Reduced of 50%	
Yoke-Keys-Pins	3 %	Reduced of 50%	

Let's extrapolate (Maybe too futuristic!!)

Further reduction of ac losses requires drastic measures:

- 1) Warm iron (a re-design is necessary)
- 2) Ceramic beam pipe?
- 3) NbTi filament even smaller (1 μ m) but good Jc

Under these conditions the ac losses could be reduced down to 5W/m when ramping.

Parameters	SIS300 dipole	Injector 4T 100mm 1.5T/s
Injection magnetic field [T] and b ₃	1.5/ -0.75	0.4/ -4.5
Maximum/ Peak magnetic field [T]	4.5/4.9	4.0/4.4
Temperature Margin (K)	0.97	1.46
AC losses in the superconducting cable during ramp [W/m]	3.5	5.6
AC losses in the structures during ramp (eddy currents and magnetization) [W/m]	3.5	5.9
Weight [T/m]	1.28	1.28
Constr. cost [K€/m] evaluated on 60 magnets	60-70	60-70

CONCLUSIONS

•The R&D developments for SIS300 dipole at INFN demonstrated the feasibility of superconducting magnets 4.5 T ramped at 1T/s.

•Advanced designs, construction techniques and first low loss conductors were developed.

•We need more information regarding the effects due to mechanical fatigue.

•On the basis of present knowledge some extrapolations can be done for future fast ramped magnet (e.g. HE LHC injector magnets).

•In particular it appear one can get ac losses as low as 10W/m when ramping the magnet (5W/m as minimum limit). The field quality at injection energy could be an issue.

SPARE SLIDES

CRISP WP5

In the frame of the FP7 program CRISP Work Package 5 INFN with GSI and CERN are developing an advanced model of SIS300 involving the cable of the II generation . Presently the collared coil is funded. Deadline: end 2013

Further an improved conductor and the re-design of electrica exits, the coil layout has been optimized for reducing the geometrical harmonics.

Normal	Units in 10 ⁴	Skew	Units in 10 ⁴
B1	10 ⁴	A1	0.16
B2	0.78	A2	0.82
B3	6.52	A3	-1.32
B4	1.78	A4	-1.57
B5	-3.03	A5	-0.22
B6	0.72	A6	0.31
B7	0.55	A7	0.15

With respect to the first dipole we are trying to reduce B3 and B5

AC losses

- Ac losses in the superconducting cable

 1.1) Hysteretic losses in the superconductor
 Q_{Hysteretic} ∝ d_f B_e J_e
 1.2) Coupling losses in the strand multifilamentary structure P_{if} = ^{B_i²}/_{P_i} (^{L_p}/_{Q_T})²
 1.3) Losses due to coupling currents between strands P_{is} ∝ ^{B_i²}/_{R_a} ; ^{B_i²}/_{R_c}

 Losses in the iron (Irreversible Magnetization, Eddy currents)
 Eddy currents in the metallic structure (including beam pipe)
 Any discussion about the ac losses should start from the field cycle
- For Discorap 6s ramps up and down Duty cycle 50%

For injector let's consider... Duty cycle 50% 1.0-1.5 TeV (4-6 T) 1.5 -1.0T/s 100 GeV (0.4T)

- The SIS300 will be installed on top of SIS100 in the same tunnel.
- The maximum magnetic rigidity is 300 Tm
- Curved super conducting $cos(\theta)$ -type magnets will be used with a maximum field of 4.5 T in the dipoles, to be ramped at 1T/s : 48 long (7.757 m) 12 short (3.879 m) dipoles

Tool development for curved winding operations: Curved mandrel and mold, curved winding of a cored cable

