Accelerator Magnet Technology for future machines

Lucio Rossi CERN

EUCARD/EUCARD2 week, June 2013

Content

- Progress of accelerators
 - Energy
 - Magnets (dipoles, and dip vs solenoid)
 - Needs
- Sc space
 - Nb-Ti possibility
 - Nb3Sn
 - HTS
- New structures
- New design...
- Normal Conducting Magnets
- Roadmap for the next decade

Progress in energy of accelerators

SC is an enabling technology

- Voltage accelrator
- Cyclic accelerators
- Phase stability
- Strong focussing
- Colliders
- Superconductivity
- (Plasma acceleration?)

11/June/2013

LRossi@Eucard workshop

Main dipoles of existing machines but structure quite different

Where we are... and where we want to go...

How?

Developing technical, viable, superconductors

For Nb-Ti : Jc at 5 T, 4.2 K (or 8 T at 1.9K) For Nb3Sn ; Jc at 12 T, 4.2 K

Best magnet short models results of magnets follow SC

We are near to conquer HL-LHC and the 11-13 T region

11/June/2013

9

LHC low-β quads: steps from present LHC toward HL-LHC

LQS of US-LARP as step for HL-LHC

3.3 m coils 90 mm aperture

Target: 200 T/m gradient at 1.9 K

LQS03: 208 T/m at 4.6 K 210 T/m at 1.9 K 1st quench: 86% s.s. limit¹¹

LQS01a: 202 T/m at 1.9 K LQS01b: 222 T/m at 4.6 K LRossi@Eucard workshop 227 T/m at 1.9 K

High

inositv

ARP

What to do to get into the region of high energy LHC ?

• Superconductors; Nb3Sn needs to get better

RRP^{*} strands with smaller filaments Smaller Filament Size - Smaller sub-elements can minimize flux jumps and improve stability. - Filament Magnetization decreases (169) (127)

Courtesy of Jeff Parrell (OST) and A. Gosh BNL

Performance targets for Nb₃Sn

And need to get control of cabling

Width =17.94 mm Thickness = 1.49 mmPL =109 mm 11/June/2013

LRoD Bed Dietderichop LARP-CERN CM20 April 9, 2013

Parameters list of LHC upgrades (O. Dominguez and F. Zimmermann)

Table 1.1 Parameters of LHC, HL-LHC, HE-LHC, and VHE-LHC

parameter	LHC	HL-LHC	HE-LHC	VHE-LHC
c.m. energy [TeV]	14	14	33	100
circumference C [km]	26.7	26.7	26.7	80
dipole field [T]	8.33	8.33	20	20
dipole coil aperture [mm]	56	56	40	40
beam half aperture [cm]	2.2 (x), 1.8 (y)	2.2 (x), 1.8 (y)	1.3	1.3
injection energy [TeV]	0.45	0.45	>1.0	7.0
no. of bunches	2808	2808	1404	4210
bunch population [10 ¹¹]	1.125	2.2	1.62	1.34
init. transv. norm. emit. [µm]	3.73,		2.10	1.53
initial longitudinal emit. [eVs]			5.67	17.2
no. IPs contributing to tune s	o challe	nge	2	2
max. total beam-beam tune sh	le chang	9.913	0.01	0.01
beam circulating current [A]	0.584	1.12	0.412	0.338
rms bunch length [cm]	7.55	7.55	7.7	7.7
IP beta function [m]	0.55	0.15	0.3	1.5

parameter	LHC	HL-LHC	HE-LHC	VHE-LHC
c.m. energy [TeV]	14	14	33	100
circumference C [km]	26.7	26.7	26.7	80
dipole field [T]	8.33	8.33	20	20
dipole coil aperture [mm]	56	56	40	40
beam half aperture [cm]	2.2 (x), 1.8 (y)	2.2 (x), 1.8 (y)	1.3	1.3
injection energy [TeV]	0.45	0.45	>1.0	7.0
no. of bunches	2808	2808	1404	4210
bunch population [10 ¹¹]	1.125	2.2	1.62	1.34
init, transv. norm. emit. [µm]	3.73,	2.5	2.10	1.53
initial longitudinal emit. [eVs]	2.5	2.5	5.67	17.2
no. IPs contributing to tune shift	3	2	2	2
max, total beam-beam tune shift	0.01	0.015	0.01	0.01
beam circulating current [A]	0.584	1.12	0.412	0.338
rms bunch length [cm]	7.55	7.55	7.7	7.7
IP beta function [m]	0.55	0.15	0.3	1.5
init, rms IP spot size [µm]	16.7	7.1	6.0	6.5
full crossing angle [µrad]	285	590	240	52.3
stored beam energy [MJ]	362	694	601	4573
SR power per ring [kW]	3.6	6.9	82.5	1991
arc SR heat load dW/ds	0.21	0.40	3.5	
energy loss per turn [keV]	6.7	6.7	201.3	5857
critical photon energy [eV]	44	44	575	5474
photon flux [10 ¹⁷ /m/s]	1.0	1.9	1.6	1.3
longit. SR emit. damping time [h]	12.9	12.9	1.0	0.32
horiz. SR emit. damping time [h]	25.8	25.8	2.0	0.64
init, longit, IBS emit, rise time [h]	57	21.0	78	305
d init, transv. IBS emit, rise time [h]	103	15.4	41	72.2
peak events per crossing	19	140 (lev.)	190	193
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1.0	7.4	5.0	5.0
beam lifetime due to burn off [h]	45	11.6	6.3	15.5
optimum run time [h]	15.2	8.9	7.0	11.8
opt. av. int. luminosity / day [fb-1]	Decci 0.47	3.7	1.5	2.1

Technology: dipoles vs solenoids in time, a comparison

Superconductor space: getting the maximum by minimising the cost

Malta Workshop 14-16 Oct. 2010 HE-LHC @ 33 TeV

Straw-man desing (only 2D!!!) reasonable characteristics: fits in LHC tunnel, stress < 160 MPa, Magnet design: very challenging but feasable: 300 mm inter-beam; anticoils to reduce flux **Multiple powering in the same magnet for FQ (and more sectioning for energy): handling energy is a problem**

The « new » materials: HTS Bi-2212

- Round wire, isotropous and suitable to cabling!
- HEP only users (good < 20K and for compact cable)
- Big issue: very low strain resistance, brittle
- Production ~ 0,
- cost ~ 2-5 times Nb3Sn (Ag stabilized)

 DOE program 2009-11 in USA let to a factor 2 gain.
We need another 50% and more uniformity, eliminating porosity and leakage

Improvemt are under way...

Oxford Instruments

Compaction + slow heating \rightarrow improved J_E

 Combined "best process" result in 15 T J_E values >450 A/mm²
→ Values match the best we've ever obtained, seem reproducible LRossi@Eucard workshop

The « new » materials: HTS YBCO

- Tape of 0.1-0.2 mm x 4-10 mm : difficult for compact (>85%) cables
- Current is EXCELENT but serious issue is the anisotropy;
- >90% of world effort on HTS are on YBCO! Great synergy with all community
- Cost : today is 10 times Nb₃Sn, target is same price: components not expensive, process difficult to be industrialize at low cost
- FP7 Eucard is developing EU Ybco

11/June/2013

New (old) approach to cabling suitable for tapes

- An old type of cabling (Roebel) suitable for tapes has been recently rivisited (Karlsruhe, New Research Industry NZ)
- Here a first 2 m long test cable done at CERN

LRossi@Eucard workshop

Also YBCO is improing: Enhancing Jc in the //c direction

V. Selvamanickam and J. Deckow, DOE Peer Review 2010

M. Rupich, J. McCall, C. Thieme, DOE Peer Review, 2010

LHC, the construction timeline: a 25 year old project

What is the possibile for HE-LHC?

The EU program The chance for HTS

- FP7-EuCARD2 (2013-16)
- Started on 1 May 2013: WP-10 Future Magnets
 - Assessment of YBCO and Bi-2212 for HE-LHC
 - Development of 10 kA class HTS compact cable
 - Prototype of a 5 T real accelerator quality magnet (assessing best structire for HTS ? Outside Eucard2, // program)
 - Test the coil in a 13-15 T background field to proof 18-20 T principle with 10 kA HTS conductor.

That's all?

- Not at all:
 - We will need fast cycling magnets for the injection chain of the high energy machine
 - (and high intensity proton synchrotron like FAIR and upgrades)
 - (see next talk by P. Fabbricatore)
- But we need also to try to cope with other accelerator that may share the same tunnel: TLEP, the e+e- circualr Higgs factory

Beyond Linac4: possible SC SPS?

Alternate scenarios for Injectors

- Keeping SPS (and its transfer lines: 6 km!): Low Energy Ring in LHC tunnel with superferric Pipetron magnets (W. Foster).
- Work done by Fermilab (H. Piekarz), see Malta workshop proc.
 - cost of LER is lower than SC-SPS option.
 - Integration is difficult but no show-stoppers

11/June/2013

LRossi@Eucard wor.....

80-km tunnel in Geneva area – VHE-LHC

For VHE, Injection scheme: SPS+ \rightarrow LHC \rightarrow VHE-LHC is too expensive (50 MW power for cryo)

Possible arrangement in VHE-LHC tunnel

11/June/2013

Possible VHE-LHC with a LER suitable for e⁺-e⁻ collision (and VLHeC)

Cheap like resistive magnets Central gap could be shortcircuited Or use of 4 beams to neutralize b-b LER can bend electron 20-175 GeV proton 0.45-4 or 5 TeV/beam Limited power both for resisitive (e+e-) and for p-p (HTS) Sc cables developed already for SC links (HiLumi). SR by e- taken at 300 K

QRL

LRossi@Eucard worksh

A few numbers for proton injector

	PROTONS		
	energy	field	
	[TeV]	[T]	
	0.026	0.117	
SPS	\checkmark	\checkmark	x 17.3
	0.450	2.03	
injector	0.450	0.167	
80 km tunnel	\checkmark	\checkmark	x 9.0
ho = 9.0 km	4.1	1.5	75 kA

With I = 115-120 kA Bmax= 2 T

A few numbers to use the same magnet for e+ - e-

	ELECTRONS		
	energy	field	
	[GeV]	[T]	
	3.5	0.016	
SPS	\checkmark	\checkmark	x 5.7
	20	0.090	
e+ / e- machine	20	0.0074	
80 km tunnel	\downarrow	\checkmark	x 8.8
ho = 9.0 km	175	0.0648	I =3 kA

The injection field is low, 74 Gauss (no diluition). Concern for field quaity. We think is possible with «noble» Fe grain oriented but probably also with normal Fe-Si. Already tested at 100 Gauss. Next magnet (for RCS) will be tested to 50 Gauss. Diluition can also be a possibilty (not good for p-p injector)

11/June/2013

CERN dipole models for LHeC ring-ring

• compact C-type dipole

- cross-section design with "umbrella" pole
- diluted magnetic yoke, since it works with low B
- solid single bars (copper or aluminum) as conductor
- 3 models with different electrical steel:
 - conventional low C, 0.5% Si, $H_c < 70 \text{ A/m}$ (\$)
 - 35M6 grain oriented, $H_c < 7 / 25 \text{ A/m}$ (\$\$)
 - Supra 36 NiFe, H_c < 6 A/m (\$\$\$)
- very similar measured results for field quality and cycle-to-cycle reproducibility

one-turn conductor I = 216 to 1300 A air cooled

Courtesy Attilio Milanese, CERN

interleaved laminations (1/3 electrical steel, 2/3 – phenolic resin)

35

40 mm gap B = 0.0127 to 0.0763 T

A Super-Resistive cable

20 mm thick shield around cable Gaps: 2 x V30xH60 mm

Cryostat: 60 mm He envelope : 50 mm SC part: 2 layers MgB₂ (Bi2212)150xØ1mm Cu inner core 40 mm Cooling hole: 10 mm

Cable:

inner core of 40 mm Cu (700 mm2) + outer core : 2 layers, 150 strands of MgB₂, 1 kA each; Outer size 45 mm. 120 kA =>120 k€/km ! For electrons: us Cu water cooled, J_{ov} 2.5 A/mm2 (easy): P_{plug}=11 MW/80km

For protons: 800 A/strands 120 kA (for >2.1 T); the central copper is the stablizer Power: 0.1-W/m at $T_{op} = 10 \text{ K}$ consumption/cable should be possible: 10 kW of cold power: P_{plug}= few MW LRossi@Eucard wolksispis for each channel... 38

11/June/2013

Conclusion

- The next step for high field magnet development is HL-LHC
 - We needs to finalize desing, test it, and to do the step from models to long prototypes
- HE-LHC & VHE-LHC are triggering a lot of R&D, ideas and make us to push to the limit each technology:
 - HE-LHC: 1000 tons of Nb-Ti
 - 1500 tons of Nb3Sn
 - 500 tons of HTS !! (Iter Nb3Sn is 400 tobns)
- HTS may have a chance for a large production:
 - If will show ability to meet accelerator quality
 - If the their cost will go down by a factor 5-10 (at least)
- 10-15 years of R& is not a luxury to gain th next future frontier (waiting to change paradigma like plasma accel...)