

European Organization for Nuclear Research

LINAC STABILISATION

MECHANICAL STABILISATION AND NANO POSITIONING WITH ANGSTROM RESOLUTION

<u>K. Artoos</u>, C. Collette (ULB), M. Esposito, C. Eymin, P. Fernandez Carmona, S. Janssens, R. Leuxe, H. Mainaud Durand, M. Modena

A. Jeremie, J. Allibe, L. Brunetti, J.-P. Baud, G. Balik , G. Deleglise, S. Vilalte, B. Caron, C. Hernandez

- Ground motion and CLIC Requirements
- Obtained results
- Short view on ultimate performance limitations

Luminosity, beam size and alignment

f

Possible mitigation techniques:

- Alignment •
- B.P.M. + dipole correctors •
- B.P.M. + Nano positioning •
- Seismometers + Dipole correctors •
- Mechanical stabilization with seismometers

Requirements Mechanical stability:

Vertical MBQ	1.5 nm at 1 Hz
Vertical Final Focus	0.2 nm at 4 Hz
Lateral MBQ, FF	5 nm at 1 Hz 5 nm at 4 Hz

$$\sigma_x(f) = \sqrt{\int_f^\infty \Phi_x(\nu) d\nu}$$

Integrated r.m.s. displacement

BUT Final requirement is Integrated Luminosity

« Nano-positioning» feasibility study

Modify position quadrupole in between pulses (~ 5 ms) Range ± 5 µm, increments 10 to 50 nm, precision ± 0.25 nm x 10⁻⁹ 6 $r_x(t), r_y(t)$ 4 2 Ξ 0 ∠→ e- beam -2 -4 -6 11.5 11.6 11.7 11.8 11.9 12 12.1 t [s]

- Lateral and vertical
- •In addition/ alternative dipole correctors
- Use to increase time to next realignment with cams

Other requirements stabilisation support

6

Stiffness-Robustness

Applied forces (water cooling, vacuum, power leads, cabling, interconnects, ventilation, acoustic pressure)

-Compatibility alignment

-Transportability/Installation

Available space

Integration in two beam module 620 mm beam height Integration in cantilever tube FF

<u>Accelerator environment</u> High radiation Stray magnetic field

- Inclined stiff piezo actuator pairs with flexural hinges (vertical + lateral motion) (four linked bars system)
- X-y flexural guide to block roll + longitudinal d.o.f.+ increased lateral stiffness.
- (Seismometers)/ inertial reference masses for sensors

Concept demonstration

actuator support with staged test benches

8

Seismometer FB max. gain +FF (FBFFV1mod): 7 % luminosity loss (no stabilisation 68 % loss) clc

X-y prototype: Demonstration Nano positioning Resolution, precision, accuracy

9

Actuators equipped with strain gauges

saclay

lrfu

X-y positioning:

Study precision, accuracy and resolution

10

The <u>precision</u> required (0.25 nm):

- demonstrated with optical rulers
- in a temperature stable environment , in air
- for simultaneous x and y motion.
- Still increase speed

Final focus concept

11

B. Caron et al, 2012, 236-247, Contr. Eng. Pract., 20 (3).; G. Balik et al, 2012, N.I.M.A., 163-

Reduction of **luminosity losses down to 2%** for different GM models

Demonstration feasability for CLIC MBQ and FF, «can we do better ?»

Performance limitations

of a mechatronics system

Freely adapted from J. Moerschell

C. Collette

Particle accelerators: CLIC: Compact Linear Collider LHC: Large Hadron Collider LEP: Large Electron-positron Collider ILC: Internatinal Linear Collider Light sources: ESRF: European Synchrotron Radiation Facility DLS: Diamond Light Source NSLS: National Synchrotron Light Source SLS: Swiss Light Source Telescopes: CTA: Cherenkov telescope Array E-ELT: Eur. Extremely Large Telescope JWST: James Webb Space Telescope TMT: Thirty Meter Telescope OWL: OverWhelmingly Large telescope Gravitational Wave Detectors: LIGO: Laser Interferometer Gravitational wave Observatory CLIO: Cryogenic Laser Interferometer Observatory TAMA300: Japanese GWD GEO600: Germany-UK GWD LISA: Laser Interferometer Space Antenna Microscopy: SPM: Scanning Probe Microscopy AFM: Atomic Force Microscopy Imaging: MRI: Magnetic Resonance Imaging Manufacturing machines: XLR: X-ray Lithography Electron Beam Lithography EBL: UVL: UV or optical Lithography

Mass/Actuator Resolution/ Range/k/ Bandwidth

16

Stress < depolarisation stress A^ *Volume* $\uparrow C_{pzt}$ \uparrow For same Range: P^ Resolution \downarrow

Bandwidth is limited by

Α

Actuator slew rate

Remark about load compensating springs:

Load compensation reduces range + bandwidth Improves resolution *

C. Collette

Particle accelerators: CLIC: Compact Linear Collider LHC: Large Hadron Collider LEP: Large Electron-positron Collider ILC: Internatinal Linear Collider Light sources: ESRF: European Synchrotron Radiation Facility DLS: Diamond Light Source NSLS: National Synchrotron Light Source SLS: Swiss Light Source Telescopes: CTA: Cherenkov telescope Array E-ELT: Eur. Extremely Large Telescope JWST: James Webb Space Telescope TMT: Thirty Meter Telescope OWL: OverWhelmingly Large telescope Gravitational Wave Detectors: LIGO: Laser Interferometer Gravitational wave Observatory CLIO: Cryogenic Laser Interferometer Observatory TAMA300: Japanese GWD GEO600: Germany-UK GWD LISA: Laser Interferometer Space Antenna Microscopy: SPM: Scanning Probe Microscopy AFM: Atomic Force Microscopy Imaging: MRI: Magnetic Resonance Imaging Manufacturing machines: XLR: X-ray Lithography Electron Beam Lithography EBL: UVL: UV or optical Lithography

Resolution limitations Sensors

10 .

18

Stabilisation

Limitations:

- 1. Thermal stability (*alignment)
- 2. EM stray fields
- 3. Sensor resolution (wavelength light)

Expected maximum one order of magnitude improvement resolution in next decade (Without major technological innovation) Low freq. is where you can win the most

Technological innovation: digital optical encoders

Heidenhain : 1 nm resolution < 1000 CHF Renishaw: 1 nm resolution < 1000 CHF

Smallest LSB can be used as quadrature 0.1 nm resolution is already possible

 In a <u>laboratory environment</u> one can expect to go an order better in the next decades, in an <u>accelerator environment</u> it is more complicated

synergies between projects: Generic

R R	XL)	1						-							.				
		Test		Protons			lons		Elec	tron-Had	Irons	BFac	tories		Linear	Colliders		Nuor	is & Neut	rinos
R&D/Projects		Facilities	HL-LHC	HE-LHC	LHiC	NICA	RHIC II	FAIR	LHeC	eRHIC	ELIC	Super KEKB	SuperB	ILC	CLIC	PFWA LWFA	Dielec- tric Acc	Muon Collider	Neutrin Factory	Project X
22	Coordination		CERN	CERN	CERN	DUBNA	BNL	GSI	CERN	BNL	JLAB	KEK	LNF	GDE	CLIC coll	SLAC/LB	SLAC?	MAP	NF Coll	FNAL
Electron cloud	Cornell?	CESR-TA	Х	Х		Х	Х		Х	Х		Х	Х	Х	Х					Х
SC magnets (High Field, Fast Cycling,	Magnet R&D	CERN, FNAL,						50												
Super-Ferric, Wigglers)	network?	GSI	HF	HF/FC	HF	51		FL				HF	HF		w					
Super-Conducting RF	ESLA Tech coll	FLASH, NML, ST	IF, XFEL				X		Х	X		Х		Х				Х		Х
High field NC Structures	?	CTF3, SLAC, KEN	(Х				Х	
Low emittance generation	CLIC/ILC WG?	ATF1										X	Х	Х	Х	Х	Х			
Nanometer beam focusing	ATF coll	ATF2	Х									Х	X	Х	Х	Х	Х			
Alignment and stabilisation	?	AlignTF, StabTF					Х		Х	X	Х	Х	Х		Х	Х	Х			
RF power source high efficiency	?		Х	Х	Х									Х	Х			Х		Х
High beam power generation&handling	?	SNS, PSI	Х	X								Х	X	Х	Х	Х	Х	X	X	Х
Collimation & targets high power beams	?	HRad,HARP,MERIT	Х	X	Х							Х	Х	Х	Х			Х	X	Х
Cooling (Electron, Coherent, Stochastic)	?	RHIC				S,E	S		C	C	Ε									
Ionisation cooling	?	MICE,MTA, Mu	Cool															Х	Х	
crab cavities	?	KEKB	Х						Х	Х	Х			Х	Х					
Plasmas	LBL, SLAC	BELLA, FACET														Х				
Lasers	LBL, Ec. Polyt	BELLA, LULI												Х	Х	Х	Х			
Drive beam generation	CTF3 collab	CTF3, FACET													Х	Х	Х			
Beam dynamics simuations	?	Test benches	Х	X	Х	Х	X	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х
Beam Instrumentation	?		Х	X	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	X	Х	Х
Beam based feedbacks	?					Х	Х			Х	Х	Х	Х	Х	Х					
Energy recovery linacs	CEBAF?	CEBAF, BNL R&	D ERL						Х	Х	Х									
Nanobeam scheme (LPA & Crab waist)	B Fact collab?	DAFNE	Х									Х	Х							
Positron generation	?									X	Х	Х	X	Х	Х					
Polarisation	?					Х	X		Х	X	Х		Х	Х	Х					
Dynamic vacuum	?			Х	Х	Х	Х			Х	Х	Х	Х		Х					

J.P.Delahaye

ICHEP 2010 (28/07/10)

Integrated luminosity simulations

23

H(

Commercial Seismometer Custom Inertial

No stabilization	68% luminosity loss							
Seismometer FB maximum gain (V1)	13%							
Seismometer FB medium gain (V1mod)	6% (reduced peaks @ 0.1							
	and 75 Hz)							
Seis. FB max. gain +FF (FBFFV1mod)	7%							
Inertial ref. mass 1 Hz (V3mod)	11%							
Inertial ref. mass 1 Hz + HP filter (V3)	3%							

Reference mass Stef Janssens

Courtesy J. Snuverink, J. Pfingstner et al.

K.Artoos, Stabilisation WG , 21th February 2013

Sensor	Resolution	Main +	Main -
Actuator sensor	0.15 nm	No separate assembly	Resolution No direct measurement of magnet movement
Capacitive gauge	0.10 nm	Gauge radiation hard	Mounting tolerances Gain change w. α Orthogonal coupling
Interferometer	10 pm	Accuracy at freq.> 10 Hz	Cost Mounting tolerance Sensitive to air flow Orthogonal coupling
Optical ruler	0.5*-1 nm	Cost 1% orthogonal coupling Mounting tolerance Small temperature drift Possible absolute sensor	Rad hardness sensor head not known Limited velocity displacements
Seismometer (after integration)	<pre>< pm at higher frequencies</pre>	For cross calibration	

K.Artoos, Stabilisation WG , 21th February 2013