

Superconducting Links

for accelerator technology

Eucard'13, CERN

A. Ballarino CERN, TE-MSC-SCD

With contributions from the SCD SL Team (B.Bordini, S.Giannelli), the Columbus Superconductors team and T. Taylor

Outline

- When/how did the development for LHC start Eucard 1 Task 7.5, LHC P7 Hi-Luminosity Upgrades, LHC P1 and P5
- > Development for LHC Upgrades
- ➤ Potential applications to accelerator technology
 High Current bus-bars, Experiments, Magnets
- Conclusions

Original proposal (2009)*: development of a technology enabling the **remote powering of the LHC magnets** using novel HTS conductors:

- higher $Tc \rightarrow$ operational temperature margin;
- safer access of personnel in the tunnel;
- shorter time for interventions in the tunnel;
- free space in the LHC ring;
- safer long-term operation of powering equipment located in radiation-free environment.

*Eucard 1, Task 7.5, A. Ballarino. Underground installation at LHC Point 7

Distribution Feed Box in LHC tunnel

50 Cables Rated at 600 A

While Eucard 1 was on-going:

- single event effects on electronics of power converters:
 risk for the reliable running of the LHC machine in
 particular at high luminosities;
- additional equipment to be installed in the LHC ring;
- adoption of superconducting links for the powering of the new high-luminosity magnets (Triplets and Matching Sections) at LHC P1 and P5 – in addition to P7

Surface Installation

High-current cables (up to 20 kA)

Number of links:

2 SC Links at LHC P7, each ~ 500 m long | Itot | ~ 30 kA/link | 50 cables rated at 600 A

4 SC Links at LHC P1, each up to \sim 300 m length 4 SC Links at LHC P5, each up to \sim 300 m length |Itot| up to 150-190 kA/link Up to 50 cables rated at 120 A, 600 A, 3000 A, 6000 A, 13000 A and

20000 A

Superconductors

		Φ (mm)	W (mm)	Th (mm)	Tmax (K)	Ic ^(‡) (A)
^(†) MgB ₂	wire	< 1	-	-	25	≥ 400
MgB ₂	tape	-	3.7	0.67	25	≥ 400
YBCO	tape	-	4	0.1	35	≥ 400
BSCCO 2223	tape	-	4	0.2	35	≥ 400

Ltot ~ 1000 km of conductor for series production

 $^{^{(\}dagger)}$ bending radius R_B ≤ 80 mm

 $^{^{(\}dagger)}$ at applied field B \leq 0.5 T

Complexity much greater than that that of "conventional" transfer lines developed (for power transmission in the least years with first (BSCCO 2223) and second generation (YBCO) HTS conductors

- High current cables (I up to 20 kA)
- Multi-cable assemblies (|I| > 150 kA)
- Vertical transfer ($\Delta H \sim 80$ m). Weight of cable ~ 1 ton

Cost of conductor is an important factor – in particular in view of the large quantity of conductor required for the final application

HTS Power Transmission Lines

Maximum rated current of conventional Cables in air

HTS Power Transmission Lines

Multi-layer helical winding of HTS tape-shaped HTS Conductor (Bi-2223 of YBCO) around a cylindrical and flexible former

Nexans Cable

Cryostat diameter = 150-200 mm (LN₂, no active shielding)

HTS Power Transmission Lines

NKT, Installation of Underground HTS Power Transmission Line

Superconducting Links for LHC New high-current cable concepts

New concept proposed by CERN

MgB₂, YBCO, BSCCO 2223

Ic >2.5 kA @ 20 K Ic = 600 A @ T > 30 K

Mock-up by Julien Hurte, TE-MSC-SCD

SC Link for LHC Point 7

Deliverable of Task 7.5, Eucard 1: 20 m long prototype (50 cables)

CERN

SC Link Test Station

MgB₂ Round Wires

$$MgB_2$$
 (Tc = 39 K)

- Simple hexagonal structure
- Low cost of raw materials and fabrication
- No weak link across gain boundaries
- Can be produced as round wire (Powder In Tube)

Development of MgB₂ round wires (CERN/Columbus) suitable for application to high-current cables. This development work took about 3 years. Cabling of conductor in reacted form, sufficient Ic and mechanical properties

Availability of round wire – that can be used in a a reacted form - is a **great advantage** for electrical applications

 Φ = 0.85 mm

MgB₂ Cables from Round Wires

Operational temperature: 20 K- 25 K

Outline

- When/how did the development for LHC started Eucard 1 Task 7.5, LHC P7 Hi-Luminosity Upgrades, LHC P1 and P5
- > Development for LHC Upgrades
- ➤ Potential applications to accelerator technology
 High Current bus-bars, Experiments, Magnets
- **Conclusions**

Transfer of 20000 A

Aluminium at Room Temperature*, L=100 m

Water cooling – 5 m³/h
P=880 W/m
A_cond= 9090 mm²

W = 24.5 kg/m - 2.45 tons $\Phi \text{ext} = 120 \text{ mm}$

* $\rho(RT) = 2.10^{-8} \Omega \text{ m}$

MgB₂ with copper stabilizer

He gas cooling, Tmax=25 K
A_cond~ 100 mm²
W ~ 1 kg/m - 100 kg

Φext=18 mm

Transfer of 20000 A – Aluminium @ RT

Φext = 220 mm, Cryostat with 150 kA multi-cable assembly for LHC

Replacement of High-Current resistive bus-bar with SC lines

Ex. ITER TF Coils

9 × 68 kA DC Circuits (18 Toroidal Field Coils)

Water cooled Aluminium bus-bar

ITER TF Coils

- 9 × 68 kA Circuits (18 Toroidal Field Coils)
- $9 \times 2 \times 50600 \text{ mm}^2 \text{ of Al conductor } (\sim 225 \times 225 \text{ mm}^2) 150 \text{ kg/m}$

Maximum unit length = $10 \text{ m} \rightarrow \text{Need for several joints}$

ITER bus-bar

EFDA study*: design of the same type as that being developed for power transmission systems based on HTS tape conductor

 Φ = 152 mm - to be compared with 225×225 mm² of the Al water cooled TF coils bus bar (68 kA)

^{*}R. Wesche, R. Heller, W.H. Fietz, V.L. Tanna, G. Zahn, EFDA Ref. TW4-TMSF-HTSCOM, 2005

ITER bus-bar

Study commissioned by EFDA* of an alternative to Al bus-bar based on the use of **HTS** – **BSCCO 2223 Tape (**65 K)

This was found to be attractive regarding space and weight

BUT

Too expensive – even taking into account the power saving over 20 years of operation

MgB₂ High-Current Cables of the type being developed for LHC would be a viable option

*R. Wesche, R. Heller, W.H. Fietz, V.L. Tanna, G. Zahn, EFDA Ref. TW4-TMSF-HTSCOM, 2005

Outline

- When/how did the development for LHC started Eucard 1 Task 7.5, LHC P7 Hi-Luminosity Upgrades, LHC P1 and P5
- > Development for LHC Upgrades
- Potential applications to accelerator technology High Current bus-bars, Experiments, Magnets
- **Conclusions**

SC Links for "pull-push" experiments

In **CLIC/ILC** it is foreseen to install **2 experiments** that share the single interaction point on a **"push-pull"** basis


```
-det-1 BPL running
2 weeks + 1 week contingency
for machine study
and inefficiency
-push-pull+calib
-det-2 BPL running
2 weeks + 1 week contingency
for machine study
and inefficiency
-push-pull+calib
1 week
1 week
```

Proposed running schedule (ILC) based on an 8-week cycle

It would be an advantage to keep cryogenics and busbars connected for such frequent movement . This could be achieved using semi-flexible cryostats containing MgB_2 based lines of the type being developed for LHC

Outline

- When/how did the development for LHC started Eucard 1 Task 7.5, LHC P7 Hi-Luminosity Upgrades, LHC P1 and P5
- > Development for LHC Upgrades
- ➤ Potential applications to accelerator technology
 High Current bus-bars, Experiments, Magnets
- **Conclusions**

Transmission Line Magnets

Pipetron- type magnets

Use of alternating gradient focusing pole tips to focus the beam in the radial and in the vertical direction — no quadrupoles

Superferric magnets – field determined by iron core

Transmission Line-type cryostat -B < 1 T on the superconductor

Initial proposal: use of **Nb-Ti** at about 6 K

Studies on potential use of HTS at 20 K or possibly at 77 K

Test facility at FermiLab

Transmission Line Magnets

Combined-function lattice magnet for a collider with a very large tunnel

W. Foster, H. Piekarz

Nb-Ti, 100 kA @ 6.5 K and 1 T

InvarTM Transmission Line piping ($\Phi \ge 80$ mm)

Lance Cooley, IASS Potsdam, 12-13 May 2011

Transmission Line Magnets

Combined-function magnet for injectors in a proton machine

- Simple magnet
- Return line incorporated in the magnet - no stray field

MgB₂ could replace Nb-Ti in magnets for injectors for proton machines (B~1.6 T)

Cable in cryostat (notional)

Stainless steel envelope, Ø 100

Superinsulation + vacuum

Twin-walled gas-cooled heat screen

Insulating vacuum

Invartube, Ø 40

20 K He gas

 $MgB_2 + Cu cable, \emptyset 20$

+ low loss supports to centre the cable

Conclusions

- ➤ HTS Superconducting Links became -rapidly- a baseline for the LHC Upgrades. Installation in the LHC is expected to take place according the LHC Upgrade plans (2018-2022)
- ➤ The development of the system can be of interest also for other applications to accelerator technology
- ➤ MgB₂ is an interesting candidate for accelerators with available He cryogenics because of its potential cost effectiveness. Today the conductor is suitable for low/medium field applications
- When cryogen at ≤ 25 K is not available, HTS is the choice. This is the case also for high-field magnet applications at 4.2 K, i.e. High Energy Upgrades of the LHC machine