TESLA/ILC Experience on Bulk Niobium Cavities Hasan Padamsee Cornell University

TESLA/ILC Experience on Bulk Niobium Cavities

The ILC SCRF Cavity:

Cryogen fill pipe

9 cell 1300 MHz SW cavity

Formed, welded niobium sheet

Tuner

- 2.4 mm thick
- 1 m long; 30 kg

Field Probe

Power Coupler Port

©Rey.Hori

Graphics by

Rey. Hori

Higher Order Mode extraction

ILC Cavity Gradient Goals

- Operating Temperature: 2K
- For Eacc = $35 \pm 20\%$ (28 42 MV/m)

– Yield > 90%

- Q > 8 x10⁹ at 35 MV/m
- X-rays < 10 mrem/hr
- Establish Qualified Industrial Cavity Production
- Involve expertise of many laboratories with SRF expertise
 - DESY, Jlab, Cornell, Fermilab, KEK....

Earlier High Gradient Results

Europe – DESY (12 Cavities) - 2007

DESY 2009 (25 Cavities)

Challenge: Gradient Yield (Before 2008)

Cavities limited by Quench

Progress in Yield Over Time

• 2009 - 2011

USA (16 Cavities) JLAB/Fermilab - 2010

Japan (11 Cavities) - 2012

75%

And Now !! 2012 (2nd Pass Yield)

Which Steps Improved Performance for Higher Yield?

- Steps Marked by **
- Reduce field emission
- Further treatment for non-performing cavities

1st Treatment – The Full ILC Procedure Blood, Guts and... Glory

- Start with high RRR (>300) Nb
 - For high thermal conductivity to remove heating from imperfections
- Exercise great care in fabrication of parts, cleaning and electron beam welding
- Electropolish 100 mm (bulk EP)
 - To remove surface damage layer
- Rinse with ethanol (or soapy water) and ultrasound for few hours
 - To dissolve S particles (avoid field emission)
- High Pressure water rinse (> 100 bar) HPR
- Furnace treatment 800 C for 2 hours
- Remove H dissolved in bulk during EP
- Light EP (20mm)
 - to remove surface contaminants from furnace
- HPR many hours
 - To remove field emitters
- Evacuate
- Bake at 120 for 48 hours
- To cure the high field Q-slope (cause still a mystery)
- RF test at 2 K

1st Treatment The ILC Preparation Procedure

- Start with high RRR (>300) Nb
 - For high thermal conductivity to stabilize heating at imperfections
- Exercise great care and cleanliness in fabrication of parts, cleaning and electron beam welding
- Electropolish 100 mm (bulk EP)
 - To remove surface damage layer
- Rinse with ethanol (or soapy water) and ultrasound for few hours
 - To dissolve S particles (avoid field emission)
- High Pressure water rinse (> 100 bar) HPR
- Furnace treatment 800 C for 2 hours
- Remove H dissolved in bulk during EP
- Light EP (20mm)
 - to remove surface contaminants from furnace
- HPR many hours
 - To remove field emitters
- Evacuate
- Bake at 120 for 48 hours
- To cure the high field Q-slope (cause still a mystery)
- RF test at 2 K

Electron Beam Welding

1st Treatment The ILC Procedure

- Start with high RRR (>300) Nb
 - For high thermal conductivity to stabilize heating at imperfections
- Exercise great care and cleanliness in fabrication of parts, cleaning and electron beam welding
- Electropolish 100 μm (bulk EP)
 To remove surface damage layer
- Rinse with ethanol (or soapy water) and ultrasound for few hours
 - To dissolve S particles (avoid field emission)
- High Pressure water rinse (> 100 bar) HPR
- Furnace treatment 800 C for 2 hours
- Remove H dissolved in bulk during EP
- Light EP (20mm)
 - to remove surface contaminants from furnace
- HPR many hours
 - To remove field emitters
- Evacuate
- Bake at 120 for 48 hours
- To cure the high field Q-slope (cause still a mystery)
- RF test at 2 K

Electropolishing Setup at DESY

Lutz Lilje DESY - MPY-

15.07.2006

EP gives smooth surface

1st Treatment The ILC Procedure

- Start with high RRR (>300) Nb
 - For high thermal conductivity to stabilize heating at imperfections
- Exercise great care and cleanliness in fabrication of parts, cleaning and electron beam welding
- Electropolish 100 mm (bulk EP)
 - To remove surface damage layer

** Rinse with ethanol (or soapy water) and ultrasound for few hours

- To dissolve S particles (avoid field emission)

- High Pressure water rinse (> 100 bar) HPR
- Furnace treatment 800 C for 2 hours
- Remove H dissolved in bulk during EP
- Light EP (20mm)
 - to remove surface contaminants from furnace
- HPR many hours
 - To remove field emitters
- Evacuate
- Bake at 120 for 48 hours
- To cure the high field Q-slope (cause still a mystery)
- RF test at 2 K

Field Emission Reduction

S particle deposited on sample during EP

(Cornell Basic R&D)

Dissolved S particle, but leaves an slight imprint, Impact unknown

Field Emission Reduction By Removing S

- Post-Chemistry Cleaning
 - Ethanol rinsing
 - Ultrasonic cleaning (De-ionized water + detergent)

1st Treatment The ILC Procedure

- Start with high RRR (>300) Nb
 - For high thermal conductivity to stabilize heating at imperfections
- Exercise great care and cleanliness in fabrication of parts, cleaning and electron beam welding
- Electropolish 100 mm (bulk EP)
 - To remove surface damage layer
- Rinse with ethanol (or soapy water) and ultrasound for few hours
 - To dissolve S particles (avoid field emission)

• High Pressure water rinse (> 100 bar) - HPR

- Furnace treatment 800 C for 2 hours
- Remove H dissolved in bulk during EP
- Light EP (20mm)
 - to remove surface contaminants from furnace
- HPR many hours
 - To remove field emitters
- Evacuate
- Bake at 120 for 48 hours
- To cure the high field Q-slope (cause still a mystery)
- RF test at 2 K

HPR and Assembly at Cornell in Class 100 Clean Room

1st Treatment- The ILC Procedure

- Start with high RRR (>300) Nb
 - For high thermal conductivity to stabilize heating at imperfections
- Exercise great care and cleanliness in fabrication of parts, cleaning and electron beam welding
- Electropolish 100 mm (bulk EP)
 - To remove surface damage layer
- Rinse with ethanol (or soapy water) and ultrasound for few hours
 - To dissolve S particles (avoid field emission)
- High Pressure water rinse (> 100 bar) HPR
- Furnace treatment 800 C for 2 hours

Remove H dissolved in bulk during EP

- Light EP (20mm)
 - to remove surface contaminants from furnace
- HPR many hours
 - To remove field emitters
- Evacuate
- Bake at 120 for 48 hours
 - To cure the high field Q-slope (cause still a mystery)
- RF test at 2 K

Furnaces Used at Different Labs for Removing H

High Field Q-slope limits BCP prepared cavities

Baking at 120 C for 48 hours reduces high field Qslope

1st Treatment The ILC Procedure

- Start with high RRR (>300) Nb
 - For high thermal conductivity to stabilize heating at imperfections
- Exercise great care and cleanliness in fabrication of parts, cleaning and electron beam welding
- Electropolish 100 mm (bulk EP)
 - To remove surface damage layer
- Rinse with ethanol (or soapy water) and ultrasound for few hours
 - To dissolve S particles (avoid field emission)
- High Pressure water rinse (> 100 bar) HPR
- Furnace treatment 800 C for 2 hours
- Remove H dissolved in bulk during EP
- Final Treatment
- Light EP (20μm)
 - to remove surface contaminants from furnace
- HPR many hours
 - To remove field emitters
- Evacuate
- Bake at 120 for 48 hours
 - To cure the high field Q-slope (cause still a mystery)
- RF test at 2 K

Early 2011 2nd Pass Yield Improvement

Gradient yield curve ACCEL/RI and AES cavities without bias

For Cavities Limited by Excess Field Emission

- High Pressure Rinse Again
 - Frequent recovery
- OR
- Repeat final EP processing
- 2nd Test Qualifies high gradient

Small Fraction of Cavities Limited by Quench < 25 MV/m

- Identify Quench Location by
 - Thermometry
 - 2nd Sound

Options for Few Cavities Which Fail to Meet High Gradient on First Test

RLGeng19oct10

Quench Location Using Second Sound in Superfluid He

Cornell Thermometry System

Individual Thermometers

KEK

KEK - Cavity Bore-Scope Inspection

Pits Often found at or near equatorial weld region

Graphics by Rey. Hori

SEM Examination of Pits found after cavity dissection – note local sharp edges

Repair Pit-like Defects Global Repair by Tumbling

- Produce smooth surface
 - Global mechanical polish

Cavity filled with liquid soap and plastic chips embedded with abrasive ceramic powder.

Repaired by Tumbling !

RLGeng19oct10 16 9-cell cavities (10 built by ACCEL/RI and 6 by AES) processed and tested at JLab since July 2008 Hpk 160-180 mT 3 Average gradient 39 MV/m Cavity Count Each of the 3 failed cavities is limited by one defect in one cell 2 1 0 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Eacc [MV/m]

1990 - Repair By Local Grinding at Cornell

2010 Local Repair - KEK

Gradient Limit Understanding and Control

Cavity	Repaired at (EP/ MT/ LG)	Guide	Tested at ed repair at KEI	Bef. K	Aft.	Year
MHI-08	KEK (LG)		KEK	16	27	2009
MHI-14	KEK (LG)		КЕК	13	37	2011
MHI-15-1	KEK (LG)		KEK	23	33	2011
MHI-15-2	KEK (LG)		KEK	29	36	2011
MHI-15-3	KEK (LG)		KEK	18	36	2012
MHI-16	KEK (LG)		КЕК	21	34	2012
MHI-19	KEK (LG)		KFK	26	37	2012
HIT-2	KEK (LG)		KEK	35	41	2012

Blue: Repaired after the 1st cycle process Red: Satisfy ILC requirements

Higher Gradient Studies for Future

- Can we get 40 MV/m reliably?
- Can we even get 50 MV/m?
- What is the limit for Nb?
- Brick wall limit, critical magnetic field, 200 mT
- Soft limit, Field emission
- So improve shape to lower Hpk (as much as possible)
- Even if we have to raise Epk...(say 20%)

Change Shape to Lower the Surface Magnetic Field

Alternative shape cavities

New Cavity Shape with low Hp/Eacc

$$E_{acc} = \frac{H_{CR}^{RF}}{H_{pk}/E_{acc}}$$

TTF: TESLA shape Reentrant (RE): Cornell Univ. Low Loss(LL): Jlab/DESY LL/ICHIRO: KEK Low Surface field(LSF): SLAC/Jlab

shape	TTF	LL/ICHIRO	RE	LSF
Iris Diameter [mm]	70	60	60	60
Ep/Eacc	1.98	2.36	2.28	1 .98
Hp/Eacc [Oe/MV/m]	41.5	36.1	35.4	37.1
$G^*R/Q [\Omega^2]$	30840	37970	41208	36995
Eacc max[MV/m]	42.0	48.5	49.4	47.2

Fundamental RF Critical Field Measurement

RE single-cell cavity VT

Eacc = 52 MV/m

58 MV/M !!

Gradients Beyond 40 MV/m ?? Re-entrant Shapes Reach 57 - 58 MV/m in Single Cells ! Lower Surface Magnetic Field & RF Lower Losses

60 mm Reentrant Cornell KEK

70 mm Tesla Shape

Cornell Re-Entrant 9-cell # 1

Present Effort

Prove single cell results in multi-cell cavities – fight field emission Epk/Eacc – 2.4

KEK/Jlab S0-study on ICHIRO#7 in 2010

w/ end groups

ICHIRO#7 VT after re-HPR at Jlab

Conclusions

- ILC community reaches desired gradient yield
- World wide industrial involvement
- Path to gradients of 40 MV/m to 50 MV/m established with single cells
- Need to attack field emission more strongly to realize 40 – 50 MV/m in multi-cells.

Back Up Slides

TTF – FLASH CM Gains

HiGrade Lab

SRF Infrastructure in AMTF

- 2 cryostats
- 6 mounting stations for inserts
- Insert prepared to hold cavities with and without He-tank
- moveable concrete shielding for radiation protection

Insert with shields being moved to cryostat

Eckhard Elsen | Status of Cavity Production | 15.4.2013 | Page 7

XFEL order includes 24 cavities as a part of the ILC-HiGrade program:

- Initially, serve as <u>quality control (QC)</u> sample for the <u>XFEL</u>
 - extracted regularly, ~<u>one cavity/month: first cavity arrived!</u>
 - after the normal acceptance test will be taken out of the production flow --> R&D
- Delivered with <u>full treatment</u> but <u>no helium tank</u> -> <u>maximize</u> the data output from the test
- Further handling within ILC-HiGrade/CRISP as feasibility study for ILC goal:
 - surface mapping from the 2nd cold RF test
 - optical inspection (OBACHT) and replica
 - Centrifugal Barrel Polishing
 - Local Grinding repair
- > Aim for <u>3 world record modules</u> from the <u>24 ILC-HiGrade cavities</u>

