

https://indico.cern.ch/conferenceDisplay.py?confld=235072

Electron cloud scrubbing run and strategy for 2015

G. Arduini, H. Bartosik, G. Iadarola, G. Rumolo for *CMAC*#7, 14 March 2013

Many thanks to Cryogenics, Transverse Damper, EN/STI, Injection, Operation, Collimation, Vacuum teams + Several ABP, RF and BI colleagues who contributed to the measurements

- → Physics run with 50ns beam from 3 March until 6 December, 2012. Intensity up to 1.6 x 10¹¹ ppb injected into LHC
- → 25ns injection tests. Slight deconditioning from 2011 observed in the arcs, but SEY quickly recovered
- \rightarrow Scrubbing run & 25ns MDs (intensity **1.1 x 10¹¹ ppb**, $\varepsilon_{x,y}$ = **2.5 µm** at injection)
 - ✓ Four days of dedicated scrubbing fills (450 GeV)
 - ✓ Ramp to 4 TeV with increasing number of bunches (84, 156, 372, 804)
 - ✓ Additional tests at 450 GeV
- $\rightarrow\,$ Physics run with 25ns beams
 - ✓ Three useful fills with increasing number of bunches (108, 204, 396)
 - ✓ Low emittance scheme used from injectors ($\epsilon_{x,y}$ = **1.4** µm at injection)

- ☑ Brief memo of the LHC status (2011)
- Evolution of electron cloud observables during the 2012 scrubbing run
- ☑ Experience at 4 TeV
- ☑ Scrubbing strategy after LS1

Brief memo of the LHC status (2011)
Evolution of electron cloud observables during
the 2012 scrubbing run
S Achievements, new information
Experience at 4 TeV
Scrubbing strategy after LS1

2011 scrubbing history of LHC arcs

Brief memo of the LHC status (2011) Evolution of electron cloud observables during the 2012 scrubbing run Achievements, new information Experience at 4 TeV Scrubbing strategy after LS1

Record intensity: 2.7 x 10¹⁴ p

- → After injection and transverse damper set up, 3.5 days of 25ns beam at 450 GeV (6 – 9 December, 2012)
- \rightarrow Fast intensity ramp up: only one fill with trains of 72 bunches, then trains of **288 bunches**
- \rightarrow Several fills with maximum number of bunches (2748)
 - ✓ Very good efficiency
 - ✓ Injection time limited by vacuum in the MKI (beginning), then by time required by cryo to re-adjust to the increasing heat load

- \rightarrow Scrubbing progress from heat load
 - ✓ Clear improvement during the first 60 70 hours
 - \checkmark Slow-down of the process in the last part of the scrubbing

- \rightarrow Beam quality evolution
 - ✓ We first focus on two specific fills

0

0

500

1000

1500

Bunch #

- \rightarrow Beam quality evolution (Beam 1)
 - ✓ Fill 3390 → Losses up to 70% occur already in the first 3 hours of store for the bunches at the tail of the trains
 - \checkmark Fill 3405 \rightarrow Losses up to 40% appear after 6 hours of store for the bunches at the tail of the trains

2000

2500

3000

0.4

N/N_o

- \rightarrow Beam quality evolution (Beam 2)
 - ✓ Fill 3390 → Losses up to 50% occur already in the first 3 hours of store for the bunches at the tail of the trains
 - ✓ Fill 3405 → Losses up to 30% appear after 6 hours of store for the bunches at the tail of the trains

- \rightarrow Beam quality evolution
 - ✓ Overview on lifetimes during scrubbing
 - ✓ Also from the lifetimes, after a clear improvement at the beginning, the process seems to significantly slow down

- → Beam quality evolution
 - ✓ Between the test ramps at 4 TeV and the physics run, there were three more fills at 450 GeV (14 − 15 December, 2012)
 - ✓ Heat load as high as in previous fills with 2748 bunches
 - ✓ Emittance degradation still present with 288b fills

Thanks to T. Rijoff, H. Maury-Cuna

- \rightarrow Reconstructing the SEY evolution during the scrubbing run
 - ✓ Starting from an initial value of 1.55, the δ_{max} in the arc dipoles seems to quickly flatten at a value slightly below 1.45
 - ✓ Unexpected leveling of the process

- \rightarrow Possible interpretation
 - Cells composed of 80% dipoles, but also 6% quadrupole + 14% drift & multipoles
 - ✓ SEY thresholds are different in dipole/drift (1.45) or quadrupole (1.2)
 - ✓ Electron cloud in dipoles is dominant (1-2 orders of magnitude) as long as δ_{max} > 1.5 in dipole chambers
 - ✓ But now quadrupoles (and multipoles?) could be dominant ...

WORK in PROGRESS

Brief memo of the LHC status (2011) Evolution of electron cloud observables during the 2012 scrubbing run Achievements, new information Experience at 4 TeV Scrubbing strategy after LS1

- → Test ramps with trains of 72 bunches to avoid excessive emittance degradation at injection energy, 2 days of 25ns beam at 4 TeV (12 14 December, 2012)
- → First fill (**84 bunches**) was used for a long-range beam-beam MD (changing the crossing angle)
- → Intensity ramp up (**156, 372 bunches**) with short stores and then finally one long store with **804 bunches** for scrubbing
- → One short store with 804 bunches at lower intensity per bunch (around $9 \times 10^{10} \text{ ppb}$)

- \rightarrow Heat load in the arcs when ramping up the energy
 - ✓ Enhanced heat load probably due to photoelectrons (804 bunches at 4 TeV produce the same heat load as 2748 bunches at 450 GeV)
 - ✓ Violent transient during the ramp (limit of the # of bunches)
 - ✓ Not much additional scrubbing visible ...

- \rightarrow Transverse emittances at top energy
 - ✓ Little effect of emittance blow up along trains of 72 bunches
 - ✓ Uniform emittance blow along the beam by about 10% over 8h store
 - \checkmark Emittances are essentially determined at injection energy

Fill 3429 4TeV

Thanks to T. Rijoff, H. Maury-Cuna

- \rightarrow Bunch-by-bunch stable phase shift
 - ✓ Factor 2-3 larger at 4 TeV than at 450 GeV
 - Clear intra-train pattern with possibly memory between trains \checkmark
 - Probably effect of photoelectrons \checkmark

Fill 3429: 11 trains of 72b

End of the 2012 proton run: physics with 25ns beams

- → Physics run with 25ns beams, almost 2 days of 25ns beam at 4 TeV (15 17 December, 2012)
- → Low emittance beams (BCMS production scheme) used from injectors and injected into LHC in trains of **48 or 2x48 bunches**
- \rightarrow Intensity ramp up (**108, 204, 396 bunches**) with increasingly long stores to collect data for the experiments
- \rightarrow Last fill with **780 bunches** \rightarrow beam went through ramp and squeeze, then had to be dumped because of the end of the run!

- \rightarrow Heat load in the arcs
 - Lower heat load than in previous stores with comparable currents: effect of scrubbing or train structure or lower emittance?

- \rightarrow Transverse emittances
 - ✓ Measured from luminosity
 - ✓ 30% higher than at injection
 - ✓ 10% spread over each train length (48b)

- \rightarrow Transverse emittances
 - ✓ Measured from luminosity
 - ✓ Strong e-cloud shaped structure along the trains of 2 x 48b
 - ✓ Memory between trains in spite of long distance

Requirements for operation with 50ns beams (to the pile up limit):

Further requirements for operation with 25ns beams:

Operation with 25ns will have the following implications:

- ⇒ Co-existence with electron cloud effects, at least for some time (especially heat load, emittance blow up and low lifetime) → slow intensity ramp up
- ⇒ **Deconditioning** occurring after longer stops (might require few hours scrubbing after each TS)
- ⇒ Close monitoring of UFOs and beam induced heating

Summary and conclusions

- \Rightarrow 3.5 days scrubbing run at 450 GeV
 - Several fills with full machine (2748 bunches per beam), record intensity 2.7 x 10¹⁴ p
 - Improvement of heat load and beam lifetime over the first ≈70 hours, then sharp slowdown of the scrubbing process (likely due to low SEY threshold in quads)
 - Emittances still **blown up** during the injection process for long enough trains of bunches
- ⇒ Experience at 4 TeV (2 days test ramps + 2 days physics run)
 - Fills with up to 804 bunches per beam stored for several hours
 - Heat load and stable phase shift indicate a steep increase of the power loss when ramping to 4 TeV, probably due to photoelectrons
 - Significant **blow up** of transverse emittances occurring only at injection energy
 - Pilot physics run with up to 396 bunches per beam (780 squeezed)
- \Rightarrow Future scenarios (2015)
 - After LS1, ≈1 week vacuum conditioning & scrubbing for 50ns run, then 1 more scrubbing week + 1 week for high energy commissioning needed to get into physics with 25ns beams
 - Co-existence with electron cloud probably inevitable at least in the first part of the physics run

Thank you for your attention !

Brief memo of the LHC status (2011)
Evolution of electron cloud observables during
the 2012 scrubbing run
S Achievements, new information
Experience at 4 TeV
Scrubbing strategy after LS1

- \rightarrow Beam quality evolution
 - ✓ Fill 3390: beginning of the scrubbing run
 - ✓ Losses of ~70% occur already in the first 3 hours of store for the bunches at the tail of the trains

- \rightarrow Beam quality evolution
 - ✓ Fill 3390: beginning of the scrubbing run
 - ✓ Losses of ~70% occur already in the first 3 hours of store for the bunches at the tail of the trains

0 ้อ

500

1000

1500

Bunch #

- \rightarrow Beam quality evolution
 - ✓ Fill 3405: end of the scrubbing run
 - Losses of ~50% appear after 6 hours of store for the bunches at \checkmark the tail of the trains

2000

2500

3000

N/N_o

- \rightarrow Beam quality evolution
 - ✓ Fill 3405: end of the scrubbing run
 - ✓ Losses of ~50% appear after 6 hours of store for the bunches at the tail of the trains

- \rightarrow Bunch-by-bunch stable phase shift
 - ✓ Factor 2-3 larger at top energy than at injection energy
 - ✓ Clear intra-train pattern with possibly memory between trains
 - ✓ Probably effect of photoelectrons

Fill 3429: 11 trains of 72b

Beam lifetime (CCC monitoring)

Scrubbing is a mitigation for the e-cloud effects:

- SEY (and hence the e-cloud)
- ③ The dependence of the SEY on the accumulated dose is logarithm like

Main focus on the dipole magnets (~60% of the machine) → they determine the performance in terms of beam quality

- The **"multipacting threshold"** for 25ns beams is significantly lower than for 50ns
- In 2011, 4 days of scrubbing with 50ns beams + 2 days of tests with 25ns beams have
 lowered the SEY in the arcs well below 2.0 allowing an "EC free" operation also in 2012

(Power loss from phase shift)/(Heat load) 2.50 2.00 1.50 Ratio 1.00 Flat bottom Flat top 0.50 0.00 -3420 3380 3390 3400 3410 3430 3440 3450 3460 Fill number

- Important transverse emittance blow up
 - \rightarrow Typically affecting only some bunches of the first injected train
 - \rightarrow Seen with BSRT, confirmed with WS, both planes
 - \rightarrow Corrected by increasing the octupole current (setting to -2 \rightarrow 26 A)

Vacuum evolution (I)

• Significant improvement seen in the vacuum (pressure gauges used for the SEY analysis in the LSS).

Pressure (mbar)

Vacuum evolution (II)

• **Clearer trend in terms of normalized pressure**(pressure gauges used for the SEY analysis in the LSS).

