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1 How to perform active control on the preisolator to
damp the 1 Hz resonance

11 Issues with using the preisolator as it is
1 Further research proposal

1 Question about accelerometer feedback
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@B Preisolator ﬁizmS\.;g

MX +CX + KX =F

m=50
ka=480e6
¢=0.01

Mp =40000
fp =1 Hz
¢p=0.01

What is needed to damp /influence peak of
pre-isolator mode?

Perfect feedback (no filtering and sensors)


http://www.ulb.ac.be/scmero/index.html
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Virtual stiffness added
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Bode Diagram
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QDO stabilization as it is
Feedforward of $p

Reduction of transmissibility

No damping of the mode

Top mass mode doesn’t move

~ (as no added stiffness due to ff
10" Authority at 1 Hz needed with
factor 100
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Proposed velocity feedback of ip

Damps first mode critically
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Vertical Coherence

@b Issues for the prelsolq’ror

_

3D coherence of ground motion

S Measurements performed in LHC tunnel
[Hz] by K. Artoos and M. Guinchard.

Lateral Coherence

Ground motion > 12 m @ 1 Hz is not
coherent

=> Active damping and transmissibility
reduction necessary at 1 Hz

[Hz]
Longitudinal Coherence

C. Collette, ILC-CLIC LET Beam Dynamics Workshop
(23-25 June 2009)
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kp = W2M, = 6.31N/um 7
kng [ e l] o

Pair = 1.1644kg/m>3@30°C

F .. = %pUQA
A=8m x2.5m
Foir = 11NQIm/s Oair = L.7um!

Fuir = 0.11N@O.1m/s Ogir = 1Tnm!

+pressure on vertical plane on surface of magnets which has a
moment arm!! +other noise sources coming from the detector
=> Increasing with position feedback necessary!



Preliminary max roll simulations vs luminosity loss
=> Max 1 urad!

J. Pfingstner

@b Issues for the preisolator

——ML no FB

-«-ML FB

——BDS no FB
-«-BDS FB

—FF no FB

-«-FF FB

—FD no FB

-«-FD FB
—ML+BDS+FF no FB
-«-ML+BDS+FF FB
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pi — pre-isolator

g — pre-alignment mechanics & support girder
st — pre-alignment mechanics & support tube
sth — LAPP stabilization system

ﬂb Further simulations with PID

lfﬂ t Xono

More complex model has been made

With PID feedback for xp =>improved
position, damping and compliance

With proposed CERN MBQ stabilization
(as example)

f';fmﬁm + kml[:l'm — '[U} + ksg(ﬁm — 1'5!} + kg{lrm — fﬂg:] = kam

Myiy + k(g — Tpi) + kori(xy — 2gr1) =0
Morigr + kori(zgr1 — z4) = fegrt

Mg#st + kst(Tse — Tpi)) + kap(Tse — Tspp) = Rsendsen
MsepZseh + ksep(Tseh — Tse) + Kgpo(Tsw — Tgpo) = —
MgpoZEqgpo + kgpolTgpo — Zew) = fegpo

Mg =50 wg = 2m200
MQ D0 = 15000 wopn = 2mH0
Mpi = 40000 Wy = 272
MQF1 = 15000 wopy = 27100
M st = 40 wse = 2w300
M sth = 150 Weep = 2w100

-kstb l:‘Fsﬂ:c-

& = 1%.
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Mmaopo
Mor: Misth

pi — pre-isolator

g — pre-alignment mechanics & support girder
st — pre-alignment mechanics & support tube
sth — LAPP stabilization system

QB Further simulations
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Possible transfer function between
ground and QDO + no drift at low freq
Possibility to change Preisolator position
IlINo noises or filters in itlll!



&!b Further Research proposal
(tender /inhouse)

i e e e - Vaa
More complex model ]‘ ........... ’
=>|nvestigate modes

. . mMmort m

with changing magnet 2 QDo

positions B == Via

mQDO +.’EQDO mQDO A TQDO
kEqpo {::ll €QDO kqpo 5 QDO
M i
mor___ |A" mor___ |A?" Msth  |Azs Mesth | Az
kor cor kqor cQF1 ' ‘E i 'E

mst 4 T stb mst * T sth

M x L < M -
Tpi = Lpiy Lpiy pi 2 Lpiy T pis 1 @? Yy Tpis
» Y ¢ A A 2 A A A




AM Further Research proposal
(tender /inhouse) Y

A¥

Research goals
1. Make a dynamic model of the system presented. For this model: —~ 2 mon'l'hs
* give the transfer functions between all degrees of freedom and the ground
* make a table of all the modal frequencies and their decomposition in eigenvectors
» graphical representation of the evolution of the modal frequencies and their decomposition
for a changing y from 0 up to 15 degrees which changes the position of M, Magp My, Mgy, M

QF1, " st/ stb’ QDo
* What is the effect of increasing the 15t mode to 20 Hz?

2. Propose the best active damping (velocity feedback, Integrated Force Feedback,...) system which:
e damps the 1t mode of M, critically
e Reduces the 15t mode from 20 Hz to 1 Hz through active control ~5 h
e uses existing technologies compliant with the environmental parameters, monll. S
* does decrease the drop off above Zwpiin the transfer function between w; and x
for the ground vibrations specified, due to noise or any other limitations (actuator or sensors).
e Specify the number actuators/sensors (The 4 specified are a suggestion).
e |s it better to use a global controller or have each leg have its own SISO controller
and decouple them with joints?
e Simulate the performance of the proposed isolation system in an environment with
ground vibrations and applying actual sensor/actuator, sensitivity, noise and resolution.



Further issues

The alignment stage (would fall off now)
Effect of the 2"9 and 3" mode on luminosity

Effect of phase difference between two preisolator
blocks

Further issues?¢



@Quesﬁon accelerometer feedback
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->issue with stability when
resonance of system and
accelerometer meet
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@Quesﬁon accelerometer feedback

System mode low: Bode Diagram
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Pole cancellation -> very good knowledge of system necessary, difficult for
complex system -> acc mode needs to be far away from system modes



Conclusion

Active control of the preisolator block is needed:

-to perform damping of the resonance

-to provide positioning /alignment capabilities /synchronize with
other preisolator

-to improve compliance of the system

Proposed solution for a PID on the preisolator
Further study required with full model=> Tender /inhouse study?

Stef’s learning moment about accelerometer feedback
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Pre-isolator feedback o
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