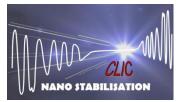
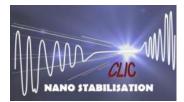
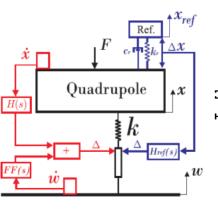


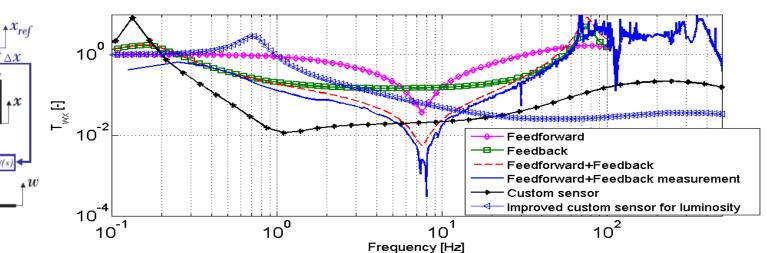
European Organization for Nuclear Research


CERN VIBRATION SENSOR PROPOSAL

K. Artoos, C. Collette, R. Leuxe, C.Eymin, P. Fernandez, S. Janssens*


The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD

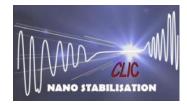



- Vibration Control with sensor
- Proposed sensitivity curve
- Proposed noise curve
- Environmental conditions
- Form of tender
- Some tests made

Integrated luminosity simulations

3

Commercial Seismometer Custom Inertial Reference mass

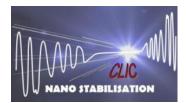

No stabilization	68% luminosity loss
Seismometer FB maximum gain	13%
Seismometer FB medium gain	6% (reduced peaks @ 0.1
	and 75 Hz)
Seismometer FB maximum gain +FF	7%
Inertial reference mass	11%
Inertial reference. mass. + HP filter	3% to 0.7% for higher freq
	Courtoov L Snuverink at a

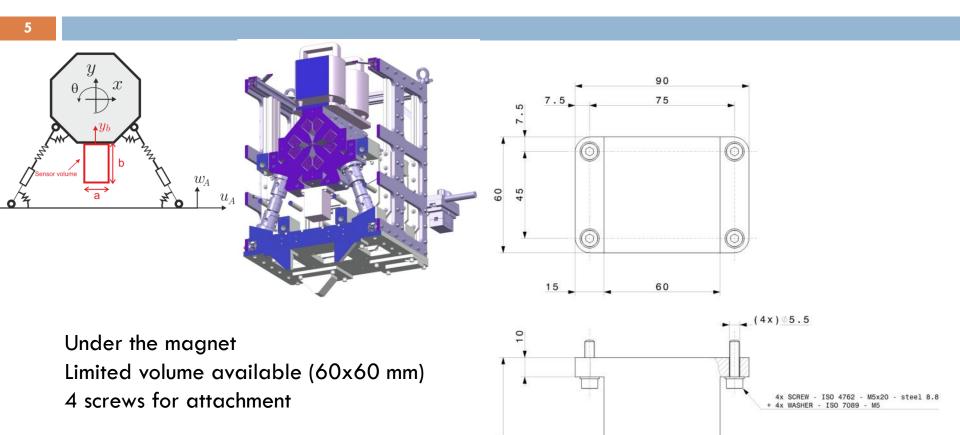
Courtesy J. Snuverink et al.

S. Janssens, P. Fernandez, A&T Sector Seminar, Geneva, 24 November 2011

4				_		
Step 1: Vertical sensor Non collocated		10^{0} 10^{-2} 10^{-4} 135 90 45 0 10^{-1}	10 ⁰		0 ¹ cy (Hz)	sp 10 ²
Requirement	Value		Requirement		Value	
f ₁	5 Hz->manufacturability		Orthogonal	rejection	>55 dB	3
d _{max}	2 dB		Sensitivity	change	<1%	
f _s	>300 Hz		due to tile +	/-0.5deg		
S	0.05 V/10 ⁻⁶ m and 1 V/10 ⁻⁶ m	1	Sensitivity	change	<1%	
Linearity	90 dB		due to tile +	/-0.5deg		
Max DC offset	0.5 V					
m	<1.5 kg					

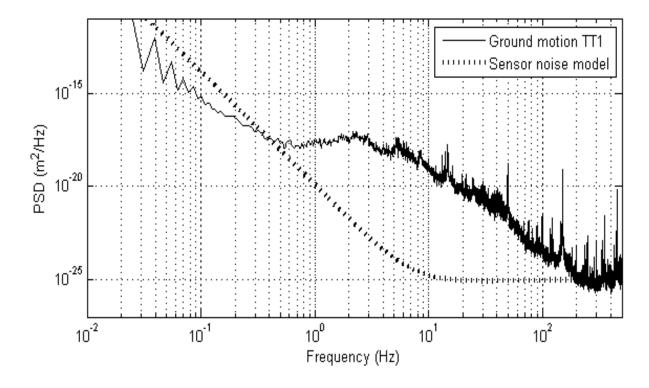
Sensitivity curve


10³


Spurious modes

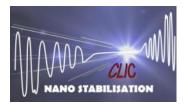
4

Geometric requirements

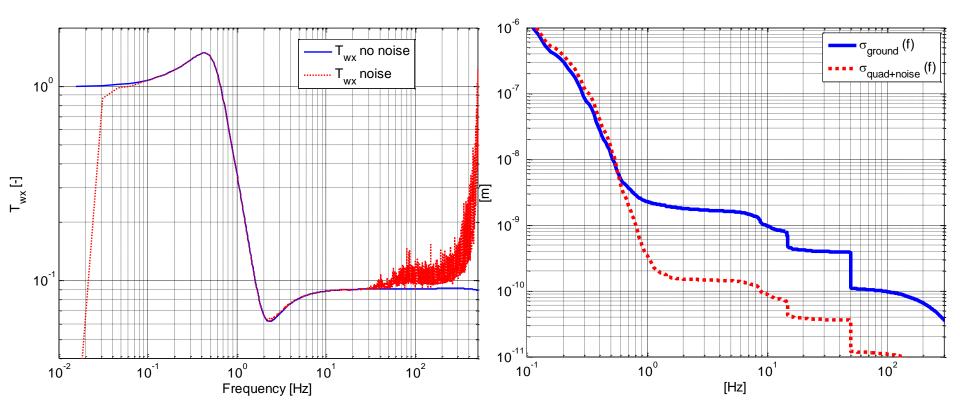

90

(60)

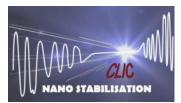
Noise requirements

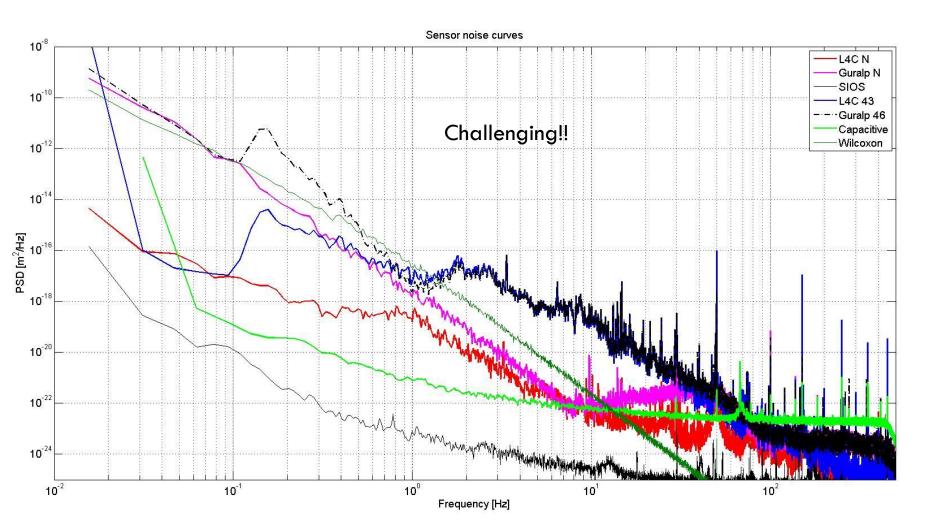


- Defined Max. noise curve
- 6th order drop off with
- flat bottom
- Enough room at low frequency (no control over microseismic!)

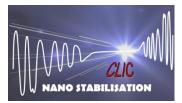

6 poles	[0,0,0,0,0,0]
6 zeros	3x [2π7+10i, 2π7-10i]
Gain	10 ⁻²⁵

Noise requirements

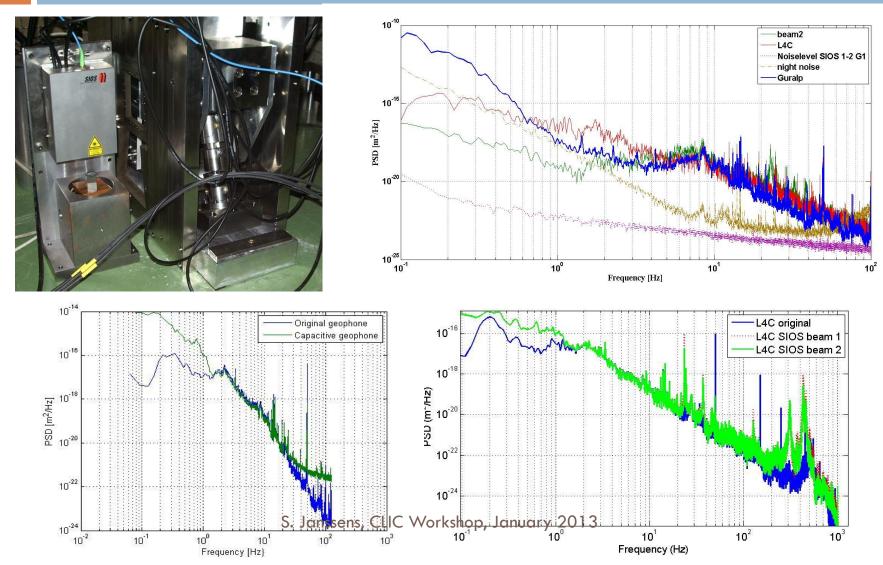

7


Noise limit reached >200 Hz Addition to r.m.s. negligible ->0.2 nm integrated r.m.s. @1 Hz Is this noise request realistic?

Noise requirements



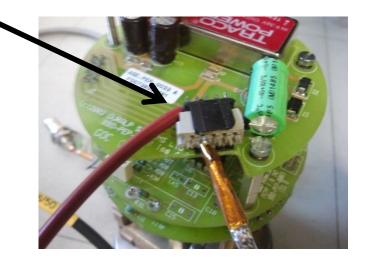
8



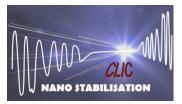
Inertial reference mass proto (v3): With interferometer/with capacitive gauge

9

Guralp mass position tests

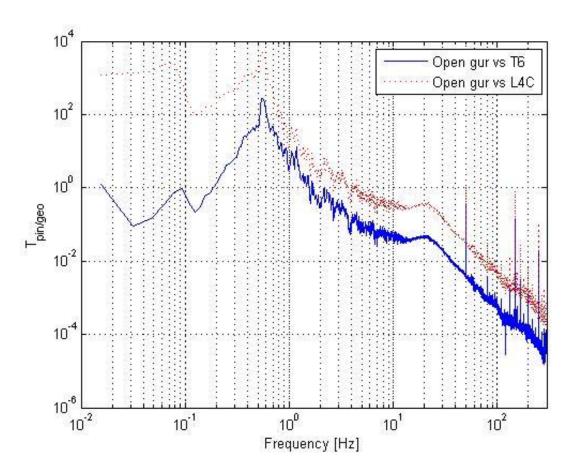


Measured several pins on the top pcb connector based on pcb reverse engineering Pablo Fernandez


10 pin connector:

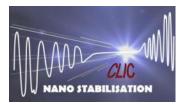
Pin 1 Mass position Pin 4: GND Pin 10: Vel +

Guralp mass position tests



11

Pin 1 Mass position

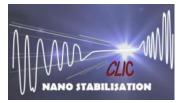

- High resonance with drop off
- Secondary mode not disconnected filter?

Environmental parameters

Temperature

- The operation temperature of the air surrounding the sensor will vary between 20°C and 40°C.
- The sensitivity curve and the noise curve should not change more than 1%
- The DC offset voltage created by the temperature drift should stay within 0.8 V.

Magnetic field


- The stray field of the quadrupole is 0.15E-4 T (0 Hz).
- Drivebeam (?)
- Kicker stray fields (?)

Radiation

- Difficult as very high near magnet (1000-10000 Gy (source: S. Mallows))
- Electronics away from beam (except adapted resistors, capacitors etc.)

Activities

Activities at the Contractor's Premises

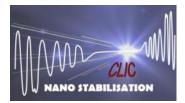
The contractor shall execute the following activities at his premises:

- Design
- Prototyping
- Manufacturing
- Calibration
- Measurement sensitivity curve and noise curve

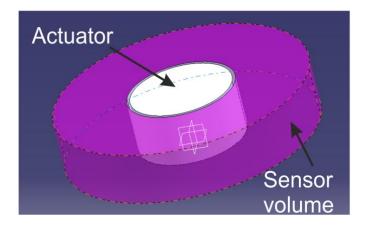
Activities on the CERN Site

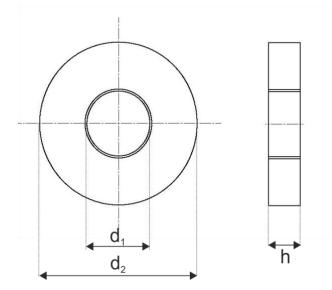
The contractor shall execute the following activities on the CERN site:

- Measurement of the sensitivity curve in a low vibration back ground
- Measurement of the noise curve in a low vibration back ground


Items and Services Supplied by CERN

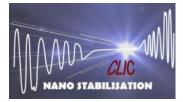
CERN will supply the following items and services:


- CERN will provide a place with low vibrations
- CERN will provide during the measurement of the sensitivity curve, a Guralp 6T seismometer with calibration certificate.
- CERN will provide the shielding around the power supply, the conditioners and electronics.



Collocated sensor

14



Requirement	Value	Tolerance
d1	39.8 mm	
d2	67 mm	
h	20 mm	
1	5 m	
θ	20 degrees	+/-3
m	0.6 kg	

Same noise and sensitivity curve Same Environmental parameters For a later stage?

15

- From beam simulations a preferred sensor sensitivity is determined
- The volume to fit in the type 1 and type 4 full stabilization is limited to 60x60x60 mm
- The chosen maximum noise curve is challenging but possible
- The environmental parameters are standard except for the radiation => electronics outside of highly radiated area

Note: 20th of March we will have visitors from the Fraunhofer institute to test their accelerometer