

Juha Kemppinen
CLIC Main Beam quadrupole active pre-alignment based on cam movers

Main Beam Quadrupole (MB
 Quad) pre-alignment requirements

Pre-alignment within $17 \mu \mathrm{~m}$ in sliding windows of 200 m
\rightarrow active pre-alignment on single MB Quads
within $1 \mu \mathrm{~m} / 100 \mu \mathrm{rad}$ in 5 d.o.f.
(stroke +/- 3 mm)
Provide rigid support for the nanostabilization system

High first eigenfrequency (preferably above 100 Hz)

Approach: cam movers

Originally developed at SLAC and since then successfully deployed in several synchrotrons and light sources
Transforms camshaft rotation to translation Very high movement resolution can be achieved

Cam mover prototype

Based on PSI design
1 d.o.f. tests verified submicron movement resolution and repeatability
Stroke +/- 5 mm

Cam mover prototype

SKF 22209 E
(a)

IKO NAST 45 ZZUU
(b)

(c)

Configuration No.	Bearing type	Bearing reference	Housing type
1	Spherical roller bearing	SKF 22209 E	Cylindrical
2	Roller follower	IKO NAST 45 ZZUU	Cylindrical
3	Roller follower	IKO NAST 45 ZZUUR	Spherical

Cam mover prototype - precision

	$0-9$ Msteps	$1-8$ Msteps
Configuration 1	$1.0 \mu \mathrm{~m}$	$0.33 \mu \mathrm{~m}$
Configuration 2	$0.38 \mu \mathrm{~m}$	$0.18 \mu \mathrm{~m}$
Configuration 3	$0.23 \mu \mathrm{~m}$	$0.31 \mu \mathrm{~m}$

MB Quad types

CLIC will have 4 types of MB Quads
At least two different cam mover types will be needed

Estimated masses (quadrupole + stabilization system)

Type 1: 300 kg
Type 4: 800 kg

Type 4 cam mover

Manufacturer: ZTS VVU Kosice from Slovakia
Design was optimized in an iterative process R. Leuxe, F. Lackner, ZTS VVU Kosice

6 cams were manufactured, then tested and calibrated in the 1 d.o.f. mock-up

Type 4 cam mover

Combination of a worm drive ($\mathrm{i}=60$) and a Spinea reduction gear ($\mathrm{i}=85$)

High movement resolution ($<0.031 \mu \mathrm{~m}$)
Self-locking (worm drive)
Negligible backlash (Spinea)
High precision rotary absolute encoder
Keeps track of orientation in case of power cut Eliminates the powertrain's backlash and hysteresis

Type 4 cam mover

ZTS VVU Kosice
Two bearing types were chosen for further testing So far only the roller follower with spherical housing (point contact) has been thoroughly tested

5 d.o.f. mock-up for type 4

5 d.o.f. mock-up was built in the old ISR tunnel at CERN
5 cam movers with appropriate interfaces can handle the 5 d.o.f. movements

All except longitudinal movement (blocked)

5 d.o.f. mock-up for type 4

5 d.o.f. mock-up for type 4

5 d.o.f. mock-up for type 4

Chassis orientation is measured using a stretched wire, 2 WPS (W1, W4) and an inclinometer (M-T)
Cam reference angles are calculated based on Dr. Andreas Streun's (PSI) formulas

5 d.o.f. mock-up for type 4

User inputs

 dx and dy in points AXE-1 and AXE-2 as well as roll Transformed to point M offsets (input to Streun's algorithms) Measured orientationInclinometer gives roll directly
AXE-1 and AXE-2 offsets calculated based on W1 and W4 offsets roll
Re-adjustment error (movement accuracy) is the difference between user inputs and measured orientation

5 d.o.f. results for type 4

Positioning repeatability below $5 \mu \mathrm{~m}$ (AXE-1 and AXE-2 offsets) and below 5 rad (roll) Movement accuracy (with respect to a reference position)
$10-20 \mu \mathrm{~m} / \mu \mathrm{rad}$ for simple movements Up to $100 \mu \mathrm{~m} / \mu \mathrm{rad}$ for complex movements

5 d.o.f. results for type 4

5 d.o.f. control - iterative method

Clearly the accuracy requirement cannot be met with one movement so an iterative method was applied
Search position until the chassis is within $1 \mu \mathrm{~m} / 5 \mu \mathrm{rad}$ from reference position $3-5$ iterations without load
$5-10$ iterations with load

5 d.o.f. results for type 4

CERN Mechanical Measurement Lab (ENMME) performed the experimental modal analysis of the 5 d.o.f. mock-up

The lowest natural frequency was found at 15 Hz which is lower than expected
This might be due to the support under cam movers \rightarrow small test setup to verify this will be built shortly (waiting for delivery of parts)

Type 1 cam mover

Was developed at CERN
Very challenging to meet all requirements simultaneously

Space restriction (no space for two gearboxes)
Enough torque (10 - 20 Nm)
Resolution ($<0.5 \mu \mathrm{~m}$)
Self-locking
Negligible backlash

Type 1 cam mover

A suitable set of components was finally found (resolution $<0.35 \mu \mathrm{~m}$)
Oriental Motor high resolution stepper motor
0.36\%/step

Davall Gears custom Spiradrive gearbox
i = 90
Self-locking
Negligible backlash

R. Leuxe

Type 1 cam mover

The first Spiradrive ${ }^{\circledR}$ series is equipped with high tensile brass pinion to have negligible backlash

The pinion broke down while the first cam mover was under 1 d.o.f. tests with 100 kg additional weight
Remaining gearboxes should
be tested with reduced load in
1 d.o.f. and with full load in
5 d.o.f. to finally determine if they can be used

Type 1 cam mover

A new series of Spiradrive ${ }^{\circledR}$ gearboxes, equipped with steel pinions, was manufactured

Better wear and torque resistance but introduces up to 5 arc minutes of backlash \rightarrow requires more complex positioning algorithms

Next steps - type 4

5 d.o.f. tests using different bearing type in cam movers

Spherical roller bearing with cylindrical housing instead of a roller follower with spherical housing
\rightarrow Line contact instead of point contact Modifications and calibration on-going

- More work needed than foreseen

5 d.o.f. mock-up can be re-built when the cam movers are ready ($\sim 2-3$ weeks)
Wearing and temperature tests

Next steps - type 4

Integration with the nano-stabilization system

Ready once 5 d.o.f. tests have been repeated using spherical roller bearings Improvement of control software and positioning algorithms

Cam mover control software unreliable and inaccessible \rightarrow mock-up software needs lots of error detection and recovery functions

Next steps - type 1

Assembly of 10 cam movers
5 with steel pinion (priority) and 5 with brass pinion
1 d.o.f. tests and calibration
5 d.o.f. mock-up
Finalize design and build in ISR
Adapt positioning algorithms to new dimensions and backlash
Adapt software to new hardware
Cam mover design optimization (FEA)

Long term (all types)

Replace expensive absolute encoders with a simpler system to recover position data
E.g. high precision proximity sensors (suggested by ZTS VVU Kosice)

Link MB quad coordinate system to CLIC coordinate system \rightarrow absolute positioning

Long term (all types)

Study the possibility to get positioning feedback directly from alignment sensors (no need for iterations)

Not possible with type 4 (limited functionality of cam control software)
Fast acquisition racks already exist at the CERN Survey section BUT
WPS reading stabilizes only after ~ 1s after the end of a movement

Long term (all types)

Development of a generic 5 d.o.f. calibration process which can handle all 4 types of MB quads and their associated alignment sensors and cam movers

Before the calibration process itself can be defined, several studies have to be finished

- Support under cam movers
- Control strategy (mathematical model, feedback, trajectory planning...)
- Alignment strategy

Long term

Cam mover based alignment in the MDI region

Questions?

Credits

Pre-alignment team
Michail Anastasopoulos Mathieu Duquenne
Sylvain Griffet
Andreas Herty
Hélène Mainaud Durand
Antonio Marin
Sylvain Mico
Michel Rousseau
Vivien Rude
Jacek Sandomierski Mateusz Sosin

Kurt Artoos
Michael Guinchard
Friedrich Lackner
Raphaël Leuxe
Paul Scherrer Institute

Andreas Streun

ZTS VVU Kosice

