
First Indico
Workshop

WEB

FRAMEWORKS Adrian

Mönnich

29-27 May 2013 CERN

Framework?
What? Do we have one? Do we need one?

A web application framework is a software
framework that is designed to support the
development of dynamic websites, web
applications, web services and web resources.

Wikipedia

Indico’s “framework”
Completely self-made! That’s a good thing, right?

It’s really old (almost ten years!)

There were basically no Python Web

Frameworks out there

Five layers – some of them are obsolete!

New things got added on top when necessary

Bad legacy code was rarely refactored in the

past

Indico’s “framework”
Anyway, how does it look like?

That’s the initial structure

It was improved a bit (mod_wsgi)

Still mod_python-like URLs and files

Custom wrapper to emulate mod_python

Uses exec (also known as eval (“evil”))

Indico’s “framework”
htdocs/*.py

We have 200 of those files.

They just call some RH’s process method. Nothing

else.

URLs look like whatever.py/create

def index(req, **params):
 return RHCategoryCreation(req).process(params)

def create(req, **params):
 return RHCategoryPerformCreation(req).process(params)

Indico’s “framework”
RH*

Data validation

Permission checks

Application logic

Pre-/Post-request operations (DB connection)

Indico’s “framework”
WP*

Can specify additional JS packages

Handles non-AJAX tabbed navigation

Does this need to be a framework layer?!

Indico’s “framework”
W*

Useful when templates could not contain any

logic

Now: Templates support loops, conditionals, etc.

W* mostly pass variables from the RH/WP to the

template

W* matches WTF for a reason

Indico’s “framework”
Templates

We got rid of the our old template engines in

2011

Now there is Mako

 % if canEdit:
 <input name="name" value="${ id }">
 % endif
 ${ fullName }

So…. How To
improve it?

COULD we add a
modern framework?

What about…
Django? It’s really popular!

Django is a high-level Python Web framework that

encourages rapid development and clean, pragmatic

design.

Full-Stack - ORM, Administration, Clean URLs,

Templating, Caching, i18n

Very useful for rather simple CRUD-style applications

Indico is huge! We don’t want to rewrite everything!

Indico does not use SQL but ZODB! Django uses a

SQL DB by default.

Something Else…
Flask!

Flask is a microframework for Python based on

Werkzeug, Jinja 2 and good intentions.

Small footprint, no bloat and not very intrusive

Easy to extend – by subclassing or (if really

necessary) forking

RESTful request dispatching (includes clean URLs)

Extensive documentation & active community on IRC

Already in use for Indico Mobile

Flask
How does it look like?

Obviously this example is very basic

It won’t be that easy to use Flask in Indico

from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World!"

if __name__ == "__main__":
 app.run()

Indico & Flask
What are we going to do? Step 1

Get rid of the custom WSGI code and replace it

with Flask/Werkzeug

Werkzeug is the low-level Web/WSGI toolkit Flask

is based on

Replace the mod_python emulation with Flask’s

routing system

Use Flask’s URL generation instead of the custom

URLHandler code

Indico & Flask
What are we going to do? Step 2

Get rid of the htdocs/*.py files which only call RHs

anyway

Instead of routing requests to those files/functions

make RHs usable as routing targets directly

How? We’ll see! Most likely with a classmethod or a

decorator.

Only internal changes so far

Let’s make sure things still work

Indico & Flask
Speaking of decorators…

In Flask it’s very common to use decorators when
registering URL routes: @app.route("/event/<int:eid>")
def event(eid):
 return "You are viewing event #%d" % eid

That’s nice, especially for smaller applications!

But in Indico it would be a major chaos and cause
all kinds of trouble with circular dependencies…

So we’ll use app.add_url_rule() directly

Indico & Flask
What are we going to do? Step 3

Switch to clean URLs:

/event/<id> or /event/<id>/timetable

Instead of e.g. conferenceDisplay.py?confId=<id>

Setup 301 (permanent) redirects from the old URLs to

the new ones.

This is the first and most prominent change visible

to users!

Indico & Flask
Additional goals (possibly long-term)

Directly access GET and POST data via the Flask

APIs (esp. in new code)

Integrate Indico sessions with the Flask session

interface

Get rid of the W* classes

Clean up templates (remove actual Python code)

Maybe convert templates from Mako to Jinja2

(better syntax)

Adrian Mönnich

Questions?

https://github.com/ThiefMaster

