Update on neutron cross sections

V.Ivanchenko

20 February 2013

New neutron cross sections data G4NEUTRONXS1.3

- Recently new dataset G4NEUTRONXSDATA1.3 was created
- Ndata and HadrCap test applications of A.Ivantchenko
- G4NDL4.2 for $\mathrm{E}<10 \mathrm{MeV}$
- G4BGGNucleonInelasticXS, G4BGGNucleonElasticXS above 20 MeV
- Barashenkov data for $Z>1$
- SAID data for $Z=1$ and $E<1.3 \mathrm{GeV}$
- Starkov parametrisation for $Z=1$ and $1.3 \mathrm{GeV}<\mathrm{E}<5 \mathrm{GeV}$
- PDG parameterisation for $Z=1$ and $E>5 \mathrm{GeV}$
- Linear interpolation in interval $10-20 \mathrm{MeV}$
- NEUTRONXS data used in classes
- G4NeutronCaptureXS - with isotope x-section
- G4NeutronElasticXS
- G4NeutronInelasticXS - with isotope x-section

Method

- HP data and high energy models are used to tabulate data structure which is G4PhysicsLogVector
- Number of bins larger for «important» elements
- H, He, B, C, N, O, Al, Si, Ar, Ca, Ge, Zr, Ar, Cd, Sn, $\mathrm{W}, \mathrm{Au}, \mathrm{Pb}, \mathrm{U}$
- Up to 800 bins
- Isotope x-sections is abundance $>0.1 \%$
- At low-energy x-section is obtained as an average value for the bin - integration of HP cross section is performed
- Due to elastic scattering neutron effectively see average x-section

Elastic Cross Section for H

Production Cross Section for H

Inelastic Cross Section for H

Elastic Cross Section for C

Production Cross Section for C

Inelastic Cross Section for C

Elastic Cross Section for Al

Production Cross Section for Al

Inelastic Cross Section for Al

Elastic Cross Section for Fe

Production Cross Section for Fe

Inelastic Cross Section for Fe

Elastic Cross Section for Cu

Production Cross Section for Cu

Inelastic Cross Section for Cu

Elastic Cross Section for W

Production Cross Section for W

Inelastic Cross Section for W

Elastic Cross Section for Pb

Production Cross Section for Pb

Inelastic Cross Section for Pb

Summary

- New dataset G4NEUTRONXS1.3 is done on top of G4NDL4. 2
- Production cross section for $\mathrm{E}<10 \mathrm{MeV}$ significantly different from one of the default Physics List
- Default cross section is very approximate
- There is still problem reported by Michel - in Hadr03 element cross section is returned instead of isotope cross section
- When the problem will be understood and fixed we propose to start to use this data as a default neutron cross section for Capture and Inelastic
- Elastic cross section effects needs to studied - CPU of simulation may be affected
- Currently we underestimate low-energy neutron elstic cross section

