# Linac4 accelerating structures

status and installation plan

F. Gerigk, PIMS collaboration meeting, 26/27 Feb 2013

#### RFQ

(project eng: C. Rossi)

design (CEA/CERN) and construction (CERN): 2009 - 2012

| Parameter                       | Value     |
|---------------------------------|-----------|
| frequency                       | 352.2 MHz |
| length                          | 3.06 m    |
| vane voltage                    | 78.27 kV  |
| maximum aperture a              | I.8 mm    |
| maximum modulation              | 2.36      |
| average aperture r <sub>0</sub> | 3.3 mm    |
| ρ/r <sub>0</sub>                | 0.85      |

| Parameter                | Value         |  |
|--------------------------|---------------|--|
| min. longitudinal radius | 9 mm          |  |
| max field on pole tip    | 34 MV/m       |  |
| Kilpatrick               | 1.84          |  |
| focusing parameter       | 5.7           |  |
| acceptance at I=0 mA     | I.7 π mm mrad |  |
| final synchronous phase  | -22 deg       |  |
|                          |               |  |



High-power conditioning has started last week at the CERN 3 MeV test stand.



| Parameter                                       | Value            |
|-------------------------------------------------|------------------|
| frequency                                       | 352.2 MHz        |
| energy range                                    | 3 - 50.3 MeV     |
| E <sub>0</sub> T                                | 2.65 - 2.95 MV/m |
| synchronous phase                               | -30 → -26 deg    |
| ZT <sup>2</sup> (linac def., operational value) | 44 - 52 MΩ       |
| Q <sub>0</sub> (measured, av. p. module)        | ~39000 - 43000   |
| cavity length                                   | 3.8 - 7,3 m      |
| number of cavities                              | 3                |
| total number of drift tubes                     | 108              |
| peak power/cavity                               | 1/2/2 MW         |
| Kilpatrick                                      | < 1.6            |

## DTL highlights



- Rigid (5 cm thick) steel tanks assembled from <2 m long segments.</li>
- PMQs in vacuum for streamlined drift tube assembly (SNS technology).
- Adjust & Assemble: Tightly toleranced Al girders w/o adjustment mechanism.
- Design for zero maintenance (no diagnostics/steering/EMQs inside DTs).
- Spring loaded metal gaskets for vacuum sealing and RF contacts.
- Easy-to-use mounting mechanism filed for patent.
- Increased gap spacing in first cells to reduce peak fields and potential breakdowns in PMQ fields.

#### DTL assembly status



- The first tank segment is copper plated and assembled with girder and drift tubes.
- Drift tube installation takes 10 min/ item thanks to metal gaskets and ("automatic") alignment.
- Vacuum leak tight.
- First tank completed by summer 2013 to be high-power tested.
- Tank 2&3 to be assembled and tested in 2013.

#### timeline DTL:

| 2004        | start of a collaboration with VNIIEF and ITEP (Russia) for the design and construction of Linac4 DTL tank                              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 2005        | decision to use PMQs                                                                                                                   |
| 2006-7      | start of mechanical design at CERN                                                                                                     |
| 2008        | construction of DTL prototype in collaboration with INFN Legnaro                                                                       |
| 2009        | successful high-power testing of the CERN/INFN prototype                                                                               |
| 2010        | filing of patent on the "mounting mechanism" to position drift tubes                                                                   |
| 2008-10     | purchase of <b>30 tons of raw material (~3000 pieces</b> of stainless steel cylinders, Cu drift tubes/stems, Al girders, flanges, etc) |
| 2011        | start of construction of tanks (industry) and drift tube parts (collaboration with ESS-Bilbao)                                         |
| 2012        | start of girder construction in industry                                                                                               |
| autumn 2012 | first tank segment assembled                                                                                                           |
| 2013        | completion of first tank and high-power testing, assembly and tuning of tank 2,3, low-power testing of tank 2,3                        |
| 2014        | installation in Linac4 tunnel and high-power testing of tank 2,3                                                                       |



#### CCDTL highlights





- First ever use of a CCDTL in an operational machine!
- 3 tanks/9 gaps per module
- Alignment of quads outside of RF structure (easy access),
- Alignment of complete module (3 cavities) on support (beam apertures within ±0.3 mm) via mechanical means (successfully tested).
- coupling cell dimensions remain constant for all modules,
- 8 technical meetings (5 in Russia, 3 at CERN),
- France CERN Moscow VNIITF (Snezhinsk) - BINP - Moscow - CERN:
   I 3000 km until the raw steel has been transformed into cavities,

#### timeline CCDTL:

| 1994        | J. Billen, F. Krawczyk, R. Wood, L. Young: "A new RF structure for Intermediate Velocity particles"                        |
|-------------|----------------------------------------------------------------------------------------------------------------------------|
| 2000        | Conceptual CCDTL design for new proton linac at CERN                                                                       |
| 2001        | 13-cell <b>cold model</b> in aluminum                                                                                      |
| 2004/5      | design/construction of CERN prototype: 2 half tanks + 1 coupling cell                                                      |
| 2006        | successful high-power testing of CERN prototype                                                                            |
| 2006        | construction of <b>prototype</b> with 2 complete tanks + coupling cell in Russia (BINP/VNIITF) within <b>ISTC</b> contract |
| 2007        | successful high-power testing of ISTC prototype at CERN                                                                    |
| 2009        | start of ISTC contracts to construct 7 CCDTL modules for Linac4                                                            |
| Jan. 2010   | shipping of 46 tons of raw material (in ~1500 pieces) to Russia                                                            |
| Nov. 2011   | successful vacuum and low-power tests of first complete module at BINP                                                     |
| autumn 2012 | delivery and assembly of first 2 modules to CERN + high power test of first module                                         |
| March 2013  | assembly of module 3 and 4, high-power test of module 2                                                                    |
| May 2013    | delivery and assembly of remaining modules to CERN, installation of first module(s) in the Linac4 tunnel                   |



- same RF frequency (352.2 MHz)
  as the rest of Linac4,
- 7 cell pi-mode design with strong cell-to-cell coupling (~5%),
- first-ever use of PIMS in proton linac,
- coupling slot design optimized for high shunt impedance,
- high power tested 60% above nominal peak fields!
- assembly of discs and rings via EBW to avoid loss of material rigidity during brazing,

#### PIMS highlights



#### timeline PIMS:

| 1977         | 5-cell pi-mode structure used in PEP storage ring (electrons) at SLAC (353.2 MHz)                                                                                                                               |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1989         | 5-cell pi-mode structure used in LEP (electrons) at CERN (352.2 MHz)                                                                                                                                            |
| 2007         | Decision to use PIMS to replace the Side-Coupled Linac (704 MHz) between 100 - 160 MeV in Linac4 for low-β proton acceleration                                                                                  |
| 2007         | tendering for 3D forged OFE copper for PIMS construction                                                                                                                                                        |
| 2007/8       | construction and measurements on scaled aluminum cold model                                                                                                                                                     |
| 2008         | order of 26 t of 3D forged OFE copper (last piece delivered: Nov 2011)                                                                                                                                          |
| 2009/10      | design and construction of full size PIMS prototype at CERN                                                                                                                                                     |
| 2010         | successful high-power testing at CERN and decision to use prototype as first PIMS cavity in Linac4                                                                                                              |
| Nov. 2010    | collaboration with <b>NCBJ</b> (National Centre for Nucl. Research, <b>Poland</b> , formerly Soltan Inst.) and <b>FZJ</b> (Forschungszentrum Jülich, <b>Germany</b> ) for the construction of 12 PIMS cavities. |
| Jan. 2011    | first shipment of altogether 31 tons of raw material (~1500 pieces) to Poland                                                                                                                                   |
| Aug. 2012    | most machining and welding operations are qualified, ~half of the discs and rings are rough-machined                                                                                                            |
| summer 2013  | delivery of first series cavity to CERN, assembly (EBW), tuning and subsequent high-power testing at CERN,                                                                                                      |
| October 2014 | delivery of last PIMS cavity to CERN                                                                                                                                                                            |

| BINP, Novosibirsk |         |   | CCDTL: design & construction                                                                                 |
|-------------------|---------|---|--------------------------------------------------------------------------------------------------------------|
| CEA, Saclay       |         |   | RFQ: mech. design & measurements                                                                             |
| ESS, Bilbao       | Table E |   | <b>DTL, jacks, RF coupler:</b> production of DTL drift tubes, support for market survey of Spanish industry, |
| FZJ, Jülich       |         |   | PIMS: port weldings (EBW)                                                                                    |
| INFN, Legnaro     |         |   | <b>DTL</b> : collaboration on prototype construction, <b>movable tuners:</b> construction                    |
| ISTC, Moscow      | M H T   | С | CCDTL: contract framework with BINP/VNIITF, financing, customs procedures in Russia                          |
| KACST, Riyadh     |         |   | DTL: construction of cold model                                                                              |
| NCBJ, Swierk      |         |   | PIMS: machining of all pieces                                                                                |
| RRCAT, Indore     |         |   | RF coupler: prototyping & construction                                                                       |
| VNIITF, Snezhinsk |         |   | CCDTL: design & construction                                                                                 |
| VNIIEF, Sarov     |         |   | DTL: preliminary mechanical design                                                                           |
| ITEP, Moscow      |         |   | DTL: preliminary designs                                                                                     |



#### reception at CERN

foreseen time: 2.5 months (for the CERN prototype it took 3.5 months)



### foreseen time: 2 months

If we receive batches of 3 cavities, we assume that they can be assembled and tested within ~6 months at CERN.

#### Installation schedule



The first 3 cavities have to be at CERN by 1. September 2013 to be followed by 1 cavity/1.5 months. First cavity to be completed by 1. June 2013!