

Linac4 Status and Schedule

Low injection energy into the PSB is the first and most severe limitation to intensity from the LHC injectors →

Decision (CERN Council, June 2007) to build a new linac (Linac4) to increase PSB injection energy from 50 to 160 MeV and pass from proton to H⁻ injection.

Advanced design: 2007-2008
Building construction: 2008-2010
Infrastructure installation: 2011-2012
Commissioning: 2013-2015

Equipment building

ground level

Linac4 tunnel

Low-energy injector

Linac4-Linac2 transfer line

Access

building

Normal-conducting linear accelerator, made of:

- 1. Pre-injector (source, magnetic LEBT, 3 MeV RFQ, chopper line)
- 2. Three types of accelerating structures at 352 MHz (increasing sequences of identical cells and decreasing number of focusing quadrupoles).
- 3. Beam dump at linac end, switching magnet towards transfer line to PSB.

No superconductivity (not economically justified in this range of β and duty cycles);

Single RF frequency 352 MHz (standardised RF allows considerable cost savings);

Beam focusing with combination of permanent quadrupoles (PMQ) and conventional ones (EMQ).

	Energy [MeV]	Length [m]	RF Power [MW]	Focusing
RFQ	0.045 - 3	3	0.6	RF
DTL	3 - 50	19	5	112 PMQs
CCDTL	50 - 102	25	7	14 PMQs, 7 EMQs
PIMS	102 - 160	22	6	12 EMQs

Linac4 infrastructure

- Waveguide network (including circulators) installed
- All cabling completed
- 8 klystrons installed (/17)
- LLRF room infrastructure completed

Linac4 tunnel

- Waveguide network completely installed
- Cabling and piping completed
- Ion source Faraday cage, LEBT support and 1st solenoid installed

Linac4 Test Stand

6

3 MeV TEST STAND for

characterization of low-energy section, starting beam operation now; will be moved to Linac4 in Summer 2013

- Fig. Ion source and LEBT;
- ®RFQ;
- ** Chopping line (to be added later);
- © Complete beam diagnostics line.

Beam tests until May 2013

1st H- beam, 15 mA, 19.02.2013

Linac4 - Status

- RFQ completed and installed in the 3 MeV test stand, under conditioning.
- New ion source being tested in both H- and proton modes.
- First two 2.8 MW klystrons (CPI and Thales) tested and installed, the remaining 6 to be delivered in 2013.
- Modulator prototype tested, series being delivered.
- 1st DTL tank section (half Tank1) completed and aligned. Components for other sections in production or being delivered.
- 2 batches of 4 CCDTL modules from BINP Novosibirsk received and being assembled or tested.
- Final large orders (magnets) placed, production so far on schedule.

Linac4 Masterplan

8

2013/16 Masterplan, adapted to limited availability of resources during Long Shutdown 1 (2013/14)

Options for connection to the PS Booster:

a) Long Shutdown 2 (2018?) or b) intermediate length shut-down after end 2016