

The Silicon Strip Tracker of the Fermi Large Area Telescope at L + 5

> Luca Baldini Università and INFN-Pisa Iuca.baldini@pi.infn.it

on behalf of the Fermi LAT collaboration

Vertex 2013, Lake Starnberg September 19, 2013

THE FERMI GAMMA-RAY SPACE TELESCOPE

Large Area Telescope (LAT)

- ► High-energy gamma-ray telescope.
- ► Energy range: 20 MeV->300 GeV.
- ► Large field of view (≈ 2.4 sr): 20% of the sky at any time, all parts of the sky for 30 minutes every 3 hours.
- Long observation time: 5 years minimum lifetime, 10 years planned, 85% duty cycle.

Gamma-ray Burst Monitor (GBM)

- ▶ 12 Nal and 2 BGO detectors.
- ► Energy range: 8 keV-40 MeV.

THE LARGE AREA TELESCOPE

Large Area Telescope

- Overall modular design.
- 4 × 4 array of identical towers (each one including a tracker and a calorimeter module).
- Tracker surrounded by an Anti-Coincidence Detector (ACD).
- \blacktriangleright All subsystem contribute to the necessary $\sim 10^6$: 1 background rejection power.
- ▶ $1.8 \times 1.8 \text{ m}^2$ footprint, ~ 3000 kg weight, ~ 650 W power budget.

- Silicon strip detectors, W conversion foils; 1.5 radiation lengths on-axis.
- 10k sensors, 73 m² of silicon active area, 1M readout channels.
- High-precision tracking, short instrumental dead time.

Anti-Coincidence Detector

- Segmented (89 tiles) to minimize self-veto at high energy.
- 0.9997 average efficiency (8 fiber ribbons covering gaps between tiles).

Calorimeter

- ▶ 1536 Csl(Tl) crystals; 8.6 X₀ on-axis.
- Hodoscopic, 3D shower profile reconstruction for leakage correction and background rejection.

TRACKER DESIGN DRIVERS: LOW ENERGY SIMULATED 80 MEV GAMMA-RAY

Angular resolution dominated by multiple scattering:

- Call for thin converters;
- But need material to convert the gamma-rays!

TRACKER DESIGN DRIVERS: HIGH ENERGY Simulated 150 GeV gamma-ray

Angular resolution determined by hit resolution and lever arm:

- Call for fine SSD pitch, but power budget is a strong constraint;
- Backsplash from the calorimeter also a potential issue.

BASIC TRACKER DESIGN

▶ 19 tray structures supporting 36 (18 x-y) silicon detection planes.

- ▶ Total depth of 1.5 X₀ on axis.
- Two distinct sections with very different performance:
 - Front (thin converters): best angular resolution;
 - Back (thick converters): increased acceptance.

THE SILICON STRIP DETECTORS

- 18 flight towers integrated and tested in 9 months.
 - Flight Module A suffering from some processing issues during the set up of the assembly chain.

Coupling	AC
Outer size	$8.95 imes 8.95 ext{ cm}^2$
Strip pitch	228 μ m
Thickness	400 μ m
Depletion voltage	< 120 V
Leakage current	a ~ 1 nA/cm 2 150 V
Breakdown voltage	> 175 V
Bad channels	$\sim 10^{-4}$ (of 900k)
# SSD tested	12500
<pre># single strip tests</pre>	pprox 30M
Rejected SSDs	0.6%

Mechanical integration (1/2)

- ► Wafers glued and wiredbonded in 4 × 1 ladders.
- ► Four ladders integrated into a 36 × 36 cm² detection plane.
- Composite trays providing the mechanical structure and housing converters/detectors.

MECHANICAL INTEGRATION (2/2)

- Less than 2 mm spacing between silicon layers.
- Readout electronics on the tray sides: 90° pitch adapters, read out via flat cables.
- 2 mm inter-tower separation to minimize dead area.

- 24 front-end chips and 2 controllers handle one Si layer.
- Data can shift left/right to either of the controllers (can bypass a dead chip).
- Zero suppression takes place in the controllers.
- Hit strips + layer OR Time Over Threshold in the data stream.
- Two flat cables complete the redundancy.
 - Key features:
 - Low power consumption ($\approx 200 \ \mu W/channel$).
 - Low noise occupancy (≈ 1 noise hit per event in the full LAT).
 - Self-triggering (three x-y planes in a row, i.e. sixfold coincidence);
 - Redundancy, Si planes may be read out from the right or from the left controller chip;
 - On-board zero suppression.

24 64-channel amplifier-discriminator chips for each detector laver

Mission status at $\mathsf{L}+\mathsf{5}$

Event statistics:

- The LAT hit 300 B triggers in orbit on June 12, 2013 (i.e., exactly after 5 years and 1 day in space);
- 60,004,450,944 events downlinked (as of June 19, 2013);
- 770,527,305 gamma-ray candidates distributed to the community.
- ▶ More than 99% up-time collecting science data (out of the SAA)
 - Including detector calibrations/hardware issues

CHARGE INJECTION CALIBRATIONS

- Set the thresholds to the nominal data taking values.
- Use the internal calibration system to inject a variable amount of charge and record the occupancy.
 - Fit to an erf: μ gives the effective hit threshold (in fC) and σ gives the equivalent noise charge.
 - (We do this on a channel-by-channel basis.)

Effective threshold

- The two distributions (at the beginning and end of the prime phase of the mission) are indistinguishable.
 - No need to change the discriminator thresholds through the first five years on orbit.

Noise

 \blacktriangleright Some $\sim 2\%$ increase through the first five years in orbit.

- More on this in the next slide.
- And, in addition to that, this is the starting point for the inventory of the bad channels.
 - Caveat: we're not sensitive to partially disconnected channels (i.e. channels with defective wire bonds in the middle of the ladder).

NOISE TRENDING

- This is roughly in agreement with what expected from the increase in the bias current from radiation damage.
 - Projects to a negligible noise increase after 10 years.

BAD CHANNELS

- List of partially disconnected channels compiled from the hitmap distributions.
- ► 384 new bad channels (i.e., 1 ladder equivalent) from the start of the mission.
 - (Mostly within one defective ladder—see next slide).

A (MINOR) HARDWARE ISSUE

- Noise in one silicon ladder increasing since January 2010
 - Test at reduced HV gave no evidence of reduced noise.
 - Keep masking strips, max loss would be 1 of 2304 silicon ladders...
 - ... But we might have evidence that the phenomenon is saturating.

HIT EFFICIENCY 1/2

- Minor negative trend, compatible with the new bad chans.
 - Particularly those masked off in Module A and in the noisy ladder.
- ► (The SRD calls for 98%.)
- ▶ Measured noise hit occupancy at the working threshold: 10^{-7} - 10^{-6} .

HIT EFFICIENCY 2/2

 Again: the bulk of the measured inefficiency is attributable to the bad channels.

INTER-TOWER ALIGNMENT

- Measure 6 parameters (3 shifts and 3 rotations) for each of the 16 tower modules with straight muon/proton tracks.
- No evidence of change through the first five years;
 - Scatter reflecting the statistical error of the measurement.

INTRA-TOWER ALIGNMENT

- Measure 6 parameters (3 shifts and 3 rotations) for each of the 576 silicon planes with straight muon/proton tracks.
- No evidence of change through the first five years;
 - Scatter reflecting the statistical error of the measurement.

CONCLUSIONS

- The LAT tracker is the largest solid-state tracker ever built for a space application:
 - 73 m² of single-sided silicon strip detectors;
 - Almost 900,000 independent electronics channels.
- All design goals met with large margins:
 - Single-plane hit efficiency in excess of 99%;
 - ▶ Noise occupancy at the level of < 1 channel per million;
 - 160 W of power consumption.
- It has served beautifully the science of the prime phase of the mission:
 - No noticeable degradation of performance observed.
- Fermi is negotiating mission extensions every two years:
 - Current baseline is to operate at least through 2016 (8 years);
 - 10-year mission goal.
 - No consumables. No hardware reason that the mission has to end after 10 years. We can hope for more.

GRAND SUMMARY A 5-year sky map above 1 GeV

Spare slides

Gamma-ray Space Telescope

DETECTION PRINCIPLE

INSTRUMENT RESPONSE FUNCTIONS http://arxiv.org/abs/1206.1896

TRIGGER AND ON-BOARD FILTER

► All subsystems contribute to the L1 hardware trigger (~ 2.2 kHz):

- TKR: three consecutive TKR x-y planes hit in a row;
- CAL_LO: single CAL log with more than 100 MeV (adjustable);
- CAL_HI: single CAL log with more than 1 GeV (adjustable);
- ROI: MIP signal in the ACD tiles close to the triggering TKR tower;
- CNO: signal in one of the ACD tiles compatible with a heavy.
- Adjustable hardware prescales to limit the deadtime fraction:
- Programmable on-board filter to fit the data volume into the allocated bandwidth (~ 1.5 Mb/s average).
 - Most of the ~ 400 Hz of events passing the gamma filter and downlinked to ground are actually charged-particle background.

MAPPING OF THE SAA

- The South Atlantic Anomaly is a region with a high density of trapped particles (mostly low-energy protons)
- We do not take physics data in the SAA (ACD HV is lowered) but we do record the trigger rate from CAL and TKR
- The mapping of the SAA was one of the goals of the commissioning phase, now routinely monitored

CR CHEMICAL COMPOSITION A SOMEWHAT UN-CONVENTIONAL LOOK

• Celestial γ -rays constitute a tiny fraction of the cosmic radiation.

- $\sim 1 \gamma$ -ray per week above 1 TeV *crossing* the LAT;
- A handful/year of which from the isotropic background.

FERMI IN CONTEXT

- Fermi was deliberately designed maximizing the acceptance:
 - Hard to imagine a bigger γ -ray detector in the near future.
- Key complementarity in design and science menu with AMS-02.

Fermi in context

- Most future detectors optimized for energy resolution:
 - And no spectrometer competitive with AMS planned.
- And CTA, not shown, is coming along!