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The Fermi Gamma-ray Space Telescope

Large Area Telescope (LAT)

I High-energy gamma-ray telescope.

I Energy range: 20 MeV–>300 GeV.

I Large field of view (≈ 2.4 sr): 20% of
the sky at any time, all parts of the sky
for 30 minutes every 3 hours.

I Long observation time: 5 years
minimum lifetime, 10 years planned,
85% duty cycle.

Gamma-ray Burst Monitor (GBM)

I 12 NaI and 2 BGO detectors.

I Energy range: 8 keV–40 MeV.
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The Large Area Telescope

Large Area Telescope

I Overall modular design.

I 4 × 4 array of identical towers (each one including a tracker and a calorimeter module).

I Tracker surrounded by an Anti-Coincidence Detector (ACD).

I All subsystem contribute to the necessary ∼ 106 : 1 background rejection power.

I 1.8 × 1.8 m2 footprint, ∼ 3000 kg weight, ∼ 650 W power budget.

Tracker

I Silicon strip detectors, W
conversion foils; 1.5 radiation
lengths on-axis.

I 10k sensors, 73 m2 of silicon
active area, 1M readout
channels.

I High-precision tracking, short
instrumental dead time.

Anti-Coincidence Detector

I Segmented (89 tiles) to
minimize self-veto at high
energy.

I 0.9997 average efficiency
(8 fiber ribbons covering
gaps between tiles).

Calorimeter

I 1536 CsI(Tl) crystals; 8.6 X0 on-axis.

I Hodoscopic, 3D shower profile
reconstruction for leakage correction
and background rejection.
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Tracker design drivers: low energy
Simulated 80 MeV gamma-ray

x

z

I Angular resolution dominated by multiple scattering:
I Call for thin converters;
I But need material to convert the gamma-rays!

Luca Baldini (Unipi and INFN) Vertex 2013 4 / 25



Tracker design drivers: high energy
Simulated 150 GeV gamma-ray

y

z

I Angular resolution determined by hit resolution and lever arm:
I Call for fine SSD pitch, but power budget is a strong constraint;

I Backsplash from the calorimeter also a potential issue.
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Basic tracker design

TKR front section

TKR back section

CAL

0 3% X×12 

0 18% X×4 

 no W×2 

I 19 tray structures supporting 36 (18 x-y) silicon detection planes.
I Total depth of 1.5 X0 on axis.

I Two distinct sections with very different performance:
I Front (thin converters): best angular resolution;
I Back (thick converters): increased acceptance.
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The Silicon Strip Detectors

Coupling AC
Outer size 8.95 × 8.95 cm2

Strip pitch 228 µm
Thickness 400 µm

Depletion voltage < 120 V
Leakage current a ∼ 1 nA/cm2 150 V

Breakdown voltage > 175 V
Bad channels ∼ 10−4 (of 900k)
# SSD tested 12500

# single strip tests ≈ 30M
Rejected SSDs 0.6%

I 18 flight towers integrated and
tested in 9 months.

I Flight Module A suffering from
some processing issues during
the set up of the assembly chain.
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Mechanical integration (1/2)

I Wafers glued and wired-
bonded in 4 × 1 ladders.

I Four ladders integrated into a
36 × 36 cm2 detection plane.

I Composite trays providing
the mechanical structure and
housing converters/detectors.
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Mechanical integration (2/2)

I Less than 2 mm spacing between
silicon layers.

I Readout electronics on the tray
sides: 90◦ pitch adapters, read
out via flat cables.

I 2 mm inter-tower separation to
minimize dead area.
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The Tracker electronics system

I 24 front-end chips and 2 controllers
handle one Si layer.

I Data can shift left/right to either
of the controllers (can bypass a
dead chip).

I Zero suppression takes place in the
controllers.

I Hit strips + layer OR Time Over
Threshold in the data stream.

I Two flat cables complete the
redundancy.

I Key features:
I Low power consumption (≈ 200 µW/channel).
I Low noise occupancy (≈ 1 noise hit per event in the full LAT).
I Self-triggering (three x–y planes in a row, i.e. sixfold coincidence);
I Redundancy, Si planes may be read out from the right or from the

left controller chip;
I On-board zero suppression.
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Mission status at L + 5
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I Event statistics:
I The LAT hit 300 B triggers in orbit on June 12, 2013 (i.e., exactly

after 5 years and 1 day in space);
I 60,004,450,944 events downlinked (as of June 19, 2013);
I 770,527,305 gamma-ray candidates distributed to the community.

I More than 99% up-time collecting science data (out of the SAA)
I Including detector calibrations/hardware issues
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Telemetry data trending: temperature
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Telemetry data trending: bias current
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Charge injection calibrations

Injected charge [fC]
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I Set the thresholds to the nominal data taking values.
I Use the internal calibration system to inject a variable amount of

charge and record the occupancy.
I Fit to an erf: µ gives the effective hit threshold (in fC) and σ gives

the equivalent noise charge.
I (We do this on a channel-by-channel basis.)
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Effective threshold

Effective threshold [fC]
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I The two distributions (at the beginning and end of the prime phase
of the mission) are indistinguishable.

I No need to change the discriminator thresholds through the first five
years on orbit.
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Noise
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I Some ∼ 2% increase through the first five years in orbit.
I More on this in the next slide.

I And, in addition to that, this is the starting point for the inventory
of the bad channels.

I Caveat: we’re not sensitive to partially disconnected channels (i.e.
channels with defective wire bonds in the middle of the ladder).

Luca Baldini (Unipi and INFN) Vertex 2013 16 / 25



Noise trending
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I This is roughly in agreement with what expected from the increase
in the bias current from radiation damage.

I Projects to a negligible noise increase after 10 years.
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Bad channels
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I List of partially disconnected channels compiled from the hitmap
distributions.

I 384 new bad channels (i.e., 1 ladder equivalent) from the start of
the mission.

I (Mostly within one defective ladder—see next slide).
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A (minor) hardware issue

Strip number
0 50 100 150 200 250 300 350

O
cc

up
an

cy

-610

-510

-410

-310

-210

-110
30 Jun 2008 (3 strips masked)

Strip number
0 50 100 150 200 250 300 350

O
cc

up
an

cy

-610

-510

-410

-310

-210

-110
30 Jun 2010 (10 strips masked)

Strip number
0 50 100 150 200 250 300 350

O
cc

up
an

cy

-610

-510

-410

-310

-210

-110
30 Jun 2012 (170 strips masked)

Strip number
0 50 100 150 200 250 300 350

O
cc

up
an

cy

-610

-510

-410

-310

-210

-110
30 Jun 2013 (184 strips masked)

I Noise in one silicon ladder increasing since January 2010
I Test at reduced HV gave no evidence of reduced noise.
I Keep masking strips, max loss would be 1 of 2304 silicon ladders. . .
I . . . But we might have evidence that the phenomenon is saturating.
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Hit efficiency 1/2
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I Minor negative trend, compatible with the new bad chans.
I Particularly those masked off in Module A and in the noisy ladder.

I (The SRD calls for 98%.)

I Measured noise hit occupancy at the working threshold: 10−7–10−6.
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Hit efficiency 2/2
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I Again: the bulk of the measured inefficiency is attributable to the
bad channels.
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Inter-tower alignment
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I Measure 6 parameters (3 shifts and 3 rotations) for each of the 16
tower modules with straight muon/proton tracks.

I No evidence of change through the first five years;
I Scatter reflecting the statistical error of the measurement.
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Intra-tower alignment
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I Measure 6 parameters (3 shifts and 3 rotations) for each of the 576
silicon planes with straight muon/proton tracks.

I No evidence of change through the first five years;
I Scatter reflecting the statistical error of the measurement.
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Conclusions

I The LAT tracker is the largest solid-state tracker ever built for a
space application:

I 73 m2 of single-sided silicon strip detectors;
I Almost 900,000 independent electronics channels.

I All design goals met with large margins:
I Single-plane hit efficiency in excess of 99%;
I Noise occupancy at the level of < 1 channel per million;
I 160 W of power consumption.

I It has served beautifully the science of the prime phase of the
mission:

I No noticeable degradation of performance observed.

I Fermi is negotiating mission extensions every two years:
I Current baseline is to operate at least through 2016 (8 years);
I 10-year mission goal.
I No consumables. No hardware reason that the mission has to end

after 10 years. We can hope for more.
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Grand summary
A 5-year sky map above 1 GeV
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Detection principle
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I Pair production is the dominant
interaction process for photons in the LAT
energy range;

I e+e− pair provides the information about
the γ-ray direction/energy;

I e+e− pair provides a clear signature for
background rejection (really?).
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Instrument Response Functions
http://arxiv.org/abs/1206.1896
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Trigger and On-Board Filter
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I All subsystems contribute to the L1 hardware trigger (∼ 2.2 kHz):
I TKR: three consecutive TKR x-y planes hit in a row;
I CAL LO: single CAL log with more than 100 MeV (adjustable);
I CAL HI: single CAL log with more than 1 GeV (adjustable);
I ROI: MIP signal in the ACD tiles close to the triggering TKR tower;
I CNO: signal in one of the ACD tiles compatible with a heavy.

I Adjustable hardware prescales to limit the deadtime fraction:
I Programmable on-board filter to fit the data volume into the

allocated bandwidth (∼ 1.5 Mb/s average).
I Most of the ∼ 400 Hz of events passing the gamma filter and

downlinked to ground are actually charged-particle background.
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Mapping of the SAA

I The South Atlantic Anomaly is a region with a high density of
trapped particles (mostly low-energy protons)

I We do not take physics data in the SAA (ACD HV is lowered) but
we do record the trigger rate from CAL and TKR

I The mapping of the SAA was one of the goals of the commissioning
phase, now routinely monitored
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CR chemical composition
A somewhat un-conventional look
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I Celestial γ-rays constitute a tiny fraction of the cosmic radiation.
I ∼ 1 γ-ray per week above 1 TeV crossing the LAT;
I A handful/year of which from the isotropic background.
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Fermi in context
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I Fermi was deliberately designed maximizing the acceptance:
I Hard to imagine a bigger γ-ray detector in the near future.

I Key complementarity in design and science menu with AMS-02.
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Fermi in context
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I Most future detectors optimized for energy resolution:
I And no spectrometer competitive with AMS planned.

I And CTA, not shown, is coming along!
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