

Szymon Kulis (CERN) on behalf of the CLIC detector and physics study

Vertex 2013 Lake Starnberg, Germany, 16-20 September 2013

- Compact Linear Collider (CLIC)
- Vertex detector at CLIC
- R&D programs
 - Thin sensor assemblies
 - Readout chip (CLICpix)
 - Power delivery and power pulsing
 - Cooling concept
 - Mechanical integration
- Summary

- Compact Linear Collider (CLIC)
- Vertex detector at CLIC
- R&D programs
 - Thin sensor assemblies
 - Readout chip (CLICpix)
 - Power delivery and power pulsing
 - Cooling concept
 - Mechanical integration
- Summary

CLIC Detector and Physics Study

- Pre-collaboration structure based on "Memorandum of Cooperation" (MoC): http://lcd.web.cern.ch/lcd/Home/MoC.html
- CERN acts as host laboratory
- At the moment 18 institutes from 15 countries, more contributors most welcome!

[The accelerator R&D is being conducted in collaboration with \sim 48 institutes]

CLIC Motivation

CLIC: concept for e⁺e⁻linear collider with √s up to 3 TeV, aiming at performing precision measurements of Standard Model (Higgs, top) and seeking new physics beyond Standard Model

... its program is complementary to LHC

18/09/2013

CLIC Accelerator

Two Beam Acceleration Scheme

- <u>Drive Beam</u> supplies RF power ~
 - 12 GHz bunch structure
 - Low energy: 2.4 GeV 240 MeV
 - High current: 100A
- <u>Main beam</u> for physics
 - High energy: 9 GeV 1.5 TeV
 - Current: 1.2 A
 - Gradient: 100 MV/m

CLIC Machine environment

- Beam profile: **45 nm / 1 nm / 44 µm** ($\sigma x / \sigma y / \sigma z$) → high E-fields → **beam related background**
 - incoherent e+e- pairs:
 (9.10⁷ particles per bunch train, at small angles)
 - $\gamma\gamma \rightarrow$ hadrons: (10³ events per bunch train expected)
- Time beam structure:
 - Bunch crossing separation : 0.5 ns
 - Bunches per train :
 - Repetition rate :

Beamstrahlung

timing requirements for CLIC detectors

312 (156 ns)

50 Hz

18/09/2013

Vertex Detector Requirements

cic

- Efficient tagging of heavy quarks (through precise determination of displaced vertices)
 - good single point resolution: $\sigma_{SP} \sim 3 \ \mu m$
 - → small pixels <~25x25 μ m² (analog readout)
 - <u>low material budget:</u> $X \leq 0.2\% X_0$ / layer (corresponds to ~200 µm Si, including supports, cables, cooling) \rightarrow very thin sensors and ASIC (~50 + 50 µm)
 - \rightarrow gas-flow cooling
 - \rightarrow low-power ASICs (~50 mW/cm²)
- 156 ns bunch trains \rightarrow **trigger-less readout**
- 20 ms gaps between trains \rightarrow **power pulsing**
- High magnetic field (4-5 T) \rightarrow Lorentz angle becomes important
- Maximum occupancy of few % (from beam-induced backgrounds)
 → time stamping ~10 ns (high-resistivity sensors, fast readout)
- Moderate radiation exposure (NIEL < $10^{11} n_{eq}/cm^2/y$, TID < 200 Gy / year)

Vertex Detector Concepts

Geometry

- Barrel + endcap
- 5-7 detection layers arranged in singlets or doublets
- Inner radius ~ 30 mm (very close to beam)

CLIC_ILD inner tracking layout

Technology options:

- <u>Hybrid with ultra-thin sensors</u> <u>and ASICs</u> (VDSM), TSV
- Emerging technologies: 3D-integrated, SOI...

3D-integrated

18/09/2013

Vertex Detector Layout Optimization

Use flavor-tagging performance as benchmark for detector layout optimization

18/09/2013

- Compact Linear Collider (CLIC)
- Vertex detector at CLIC
- R&D programs
 - Thin sensor assemblies
 - Readout chip (CLICpix)
 - Power delivery and power pulsing
 - Cooling concept
 - Mechanical integration
- Summary

Motivation: Evaluate performances and yield of thin pixel sensor and demonstrate the feasibility of a good tracking efficiency with thin assemblies Ultimate goal: 50 μm thick sensors + 50 μm thick ASICs, 25μm pixel pitch

- Thin sensors simulations see "12:30 TCAD Simulation of Silicon Radiation Detectors using commercial simulation products" by Mathieu Benoit, today 12:30
- Thin sensor +"normal" Timepix assemblies
 - Feasibility tests of ultra-thin sensors
 - Assemblies with 50, 100, 200 µm sensor thickness (delivered 08/2013)
- Assemblies with thinned Timepix (100 μm) and thin sensors (100 μm) in the pipeline
- Sensors with $25x25\ \mu m^2$ pixels end 2013?

12/31

Advacam

18/09/2013

- 50 μm thin with 20 μm and 50 μm active-edge assemblies on standard thickness Timepix ASIC (delivered July 2013)
- **Excellent sensor quality**, few (<8) unconnected bumps
- Depletion at **15V**
- 5 x assemblies tested at DESY

Micron Semiconductor + IZM

- **100**, **150**, **200** µm pixel sensor (Timepix compatible)
- 3 x 100 um assemblies tested at DESY

Testbeam Setup and Infrastructure

Test beam infrastructure @ DESY:

- Electron beam (energies up to 6 GeV)
- **Telescope** based on MIMOSA detectors
- **DAQ** framework provided:
 - EUDAQ (software)
 - Trigger Logic Unit (hardware)
- Reconstruction and analysis software
- Very good user support

MIM T

Test beam setup for thin sensor assemblies studies:

- Optimization of telescope geometry (distances between planes)
- Assemblies (DUT) mounted on translational and rotational stages
- FITpix readout for Timepix
- Man in the middle TLU device (MIM TLU)
 - synchronization with the telescope
 - increase track rate
- Dedicated data producer (plug-in to EUDAQ framework)
- Extensions to the reconstruction and analysis software

Testbeam results

cic

15/31

50µm sensor thickness (15 V bias), 50 µm active edges (from Advacam)

18/09/2013

TB: Single point resolution

18/09/2013

- Compact Linear Collider (CLIC)
- Vertex detector at CLIC
- R&D programs
 - Thin sensor assemblies
 - Readout chip (CLICpix)
 - Power delivery and power pulsing
 - Cooling concept
 - Mechanical integration
- Summary

CLICpix Readout Chip

CLICpix is a hybrid pixel readout chip to be used in vertex detector

Main features:

- Small pixel pitch ($25 \ \mu m$),
- **Simultaneous TOA** (4 bits) & **TOT** (4 bits) measurements
- Power pulsing
- Data compression
- Both pulse polarities can be handled

Demonstrator CHIP:

- commercial 65 nm CMOS technology (proven to be radiation resistant)
- array of 64x64 pixels
- The **Krummenacher architecture**, with a single ended preamp, a two stage discriminator and a 4-bit DAC

18/09/2013

FPGA based readout system:

- Spartan 6 XILINX FPGA (on Atlys evaluation board)
- 1 Gbit Ethernet interface (TCP/IP & UDP/IP)
- CHIP ↔ FPGA Serial link up to 400 Mbps (not fully tested yet)
- Very-high-density cable interconnect (VHDCI)

18/09/2013

Szymon KULIS | Vertex Detector R&D for CLIC

1.85 mm

CLICpix S-curves

18/09/2013

CLICpix Matrix Equalization

Calibrated spread is 0.89 mV (about 22 e-) across the whole matrix

18/09/2013

CLICpix Matrix Uniformity

• Mean ENC is **55** (without sensor)

CLICpix Summary

Parameter	Unit	Simulations	Measurement
Rise time	[ns]	50	-
TOA accuracy	[ns]	<10	<10
Gain	[mV/e ⁻]	44	40 *
Dynamic range	[e ⁻]	44 k (configurable)	40k * (configurable)
INL (TOT)	[LSB]	< 0.5	< 0.5
ENC (without senor)	[e ⁻]	~60	~55 *
DC spread σ (uncalibrated)	[e ⁻]	160	128 *
DC spread σ (calibrated)	[e ⁻]	24	22 *
Power consumption	[µw/pixel]	6.5	7

- The power pulsing works according to specifications (reducing the power consumption by more than one order of magnitude in power off state)
- The power-on and power-off times can be programmed (the front-end wake-up time is less than 15 $\mu s)$

*) no calibration with sensor available yet (results obtained with electrical test pulses)

18/09/2013

Through-Silicon Vias (TSV)

Through Silicon Via: vertical electrical connection passing through Si wafer

- eliminates need for wirebonds
- 4-side buttable chips
- increased reliability, reduced material budget

CEA-Leti via-last process flow

(2) Temporary bonding, thinning to 120 µm

(1) UBM deposition

- (3) Via etching + isolation
- (4) Cu deposition + Patterning
- (5) Backside passiv. + UBM deposition
- (6) Debonding + attachment to dicing tape

Medipix TSV project with CEA-Leti (ALICE, CLIC, ACEOLE and AIDA)

130 nm Medipix wafers

Status:

- successful completion of first phase: demonstrate feasibility
- on-going second phase: demonstrate good yield

18/09/2013

- Compact Linear Collider (CLIC)
- Vertex detector at CLIC
- R&D programs
 - Thin sensor assemblies
 - Readout chip (CLICpix)
 - Power delivery and power pulsing
 - Cooling concept
 - Mechanical integration
- Summary

Powering Scheme

18/09/2013

Cooling Concept

Requirements:

Proper sensor and ASICs cooling

Challenges:

- Low material budget
- ~ 470 W heat load to extract
- High dimensional stability
- Assembly and cabling integration

Solution:

18/09/2013

 Forced air-flow cooling, spiral end-cap geometry

Cooling System Simulations

• Mass flow: **19.9 g/s**

18/09/2013

• Avg. velocity in barrel: 6.3 m/s

Air temperature

Cooling Mockup Setup

Test program:

- Evaluate forced convection air cooling
- Measure & characterize airflow induced vibrations
- Validate the dedicated finite element simulations
- Develop and characterize low-mass ladder support (~0.05% X₀)

Thermal test bench

18/09/2013

Szymon KULIS | Vertex Detector R&D for CLIC

Outlet

Integrated approach

18/09/2013

Szymon KULIS | Vertex Detector R&D for CLIC

30/31

Summary

- CLIC environment + physics requirements pose challenging demands on vertex-detector system (a new kind of challenges compared to LHC)
 - Less radiation damage but ...
 - Higher spatial resolution precision (~3 $\mu m)$
 - Finer time stamping (~ 10 ns)
 - Lower power (0.3 μ W/channel, 50 mW/cm²)
 - Lower material budget (0.2 % X_0)
- Ongoing active R&D on:
 - Thin sensors
 - Readout technologies
 - Power-delivery and power pulsing
 - Mechanics, cooling