

Overview of the CMS strip and pixel detectors

Claude Nuttens claude.nuttens@cern.ch On behalf of the CMS Tracker collaboration

Université catholique de Louvain Center for Cosmology, Particle Physics and Phenomenology

Vertex2013

16th of September 2013

CMS Tracker Detector

- Silicon pixel + Strip detector with optical analog readout
- Pixel :
 - N+ in n sensors :
 - 100 μm x 150 μm
 - 52x80 pixel read by one ReadOut Chip (ROC)
 - Barrel (Bpix):
 - 3 layers (56cm long) at r= 4.3,7.2, 11.0 cm
 - → 48M pixels, 11520 ROCs, 1120 RO links
 - Endcap (FPix) :
 - 4 disks inner (outer) radius=6 (15) cm at z= ±34.5. ±46.5 cm
 - → 18M pixels, 4320 ROCs, 192 RO links
- Strip :
 - 9.3M strips in 15148 modules :
 - Inner: 4 layers barrel (TIB), 3 disks (TID) cap
 - Outer:6 layers barrel (TOB), 9 disks (TEC)cap
 - 200m² silicon sensor (p-in-n) :
 - Pitch from 80 to 205 μm
 - 20<r<55 cm thin (d=320 μm)
 - r>55 cm thick (d=500 μm)
 - Generally measure rΦ direction
 - Some radii ('Stereo'): additional 2nd modules rotated by 100 mrad
 - measurements for n(track)

Tracker state @ end of data taking

CMS Data: a few figures

CMS Integrated Luminosity, pp

• 4.5 (1.7)% loss due to downtime (deadtime)

 77 % design inst. Luminosity reached with a 50ns bunch spacing

- Pile up:
 - Average in 2012: 21 interaction/bunch crossing
 - Peak PU (exept high PU runs) :

Period	Peak PU
2010	3.5
2011	18.6
2012	34.5

- Cluster occupancy shows the dead parts
- Channels out:
 - BPix: ~2.3%
 - FPix: ~7.2%

«Slow» channels :

- Long rise time in analog readout
- Pixel addresses misread
- ROCs or events miscounted if headers lost

Optical readout

Strip Status

Active, Masked, Not Commissioned

- Active fraction > 97.5%
 - No/low impact on track reconstruction as many layers
- Stable :
 - 98.5% (2008) ->97.75 % (2011)
- Can't be removed for recovery (as pixel)

- Reasons for masking :
 - Control ring shorts
 - Control rings not functioning
 - HV line shorts
 - HV lines open
 - Fibres, Communication and Control Units (CCU)

Activity on tracker during LS1

- LHC is aiming for:
 - √s=13 TeV
 - 25ns bunch spacing
 - Peak instantaneous Luminosity ~ 1.7x10³⁴/cm²/s
- For the Pixel:
 - Extraction and storage in a clean room
 - Broken part repair:
 - FPIX basically finished (will bring FPIX to 100% minus one chip)
 - BPIX repair ongoing (will bring BPIX to 98.9%)
 - Installation of two pixel pilot blades with modules from Phase1 upgrade
 - Better center the pixel detector during insertion in 2014
 - After installation (~June 2014): extensive calibration
- For the Strip:
 - No direct access to the detector: recovery of as many channels as possible
 - Lowering of the temperature: -10°C on the sensor with -20°C coolant
 - To counteract the degradation from radiation
- Maintenance and upgrade:
 - Data Aquisition system (DAQ)
 - Detector Control System (DCS)
 - Offline tools

Tracker performances

Pixel Hit Efficiency

- Pixel hit efficiency in general > 99%.
- Hit efficiency depends on the instantaneous luminosity due to the occupancy
 - Unavoidable inefficiency is expected due to dynamic data losses
 - pixel-by-pixel, depends on PU, L1 rate, Inst. Lumi, orbit number
 - Consists of buffer overflow, pixel over-writes, busy pixel columns and internal resets (all within the frontend readout chip)

Pixel Single Event Upset (SEU)

- SEU events = bit flip in the ROC or auxiliary electronics caused by ionization
- Increase with instantaneous luminosity
- Consequences :
 - interrupt data taking
 - degradation of data quality
- Does the SEU compromise data taking ?
 - No : No action needed (concern Single Pixel and single ROC i.e. <0.1‰)
 - Yes : need to be fixed (concern auxiliary electronics i.e. ~1%)
 - → Stop the trigger and reprogram the ROC registers, DACs, and portcards
- 1 SEU (needing treatment) every ~73 pb-1 of data so ~1.5 SEUs / LHC fill

Strip Hit Efficiency

- All modules :
 - Variation down to 92 %, reflecting bad module distribution
- Good modules :
 - > 99 % efficient \rightarrow We know very well which modules are bad

Strip Signal-to-Noise Ratio

- Clusters on track only, charge corrected for track angle.
- Distributions nicely follow Landau distributions convoluted with Gaussian resolution
- Large most probable value :
 - Thin sensor (TIB) :~18
 - Thick sensor (TOB) :~22
 - Consistent with values from irradiation campaigns prior to integration

Pixel and Strip resolutions

Momentum and Primary vertex resolution

- Good hit resolution in the pixels and strip
- High hit multiplicity by tracks
- → Good Momentum resolution: $\sigma(p_t)/p_t = 1-2\%$ for $p_t(\mu) = 100$ GeV/c With the tracker only

200

Combination allow to have a very good primary vertex resolution

b) CMS barrel (0 < |n| < 0.2)

Muon spectrometer

nner detector

mbined

CMS end caps (1.8

Combined

Much spectromete Inner detector

b-tagging related variables

- Thanks to a very good:
 - Hit resolution performance
 - Momentum resolution
 - Vertexing resolution
 - Precises and very discriminant inputs for the b-tagging
- Excellent description by simulation

Strip Signal Time Profile

- Important for Signal-to-noise ratio if timing is off
- Efficiency suffers if far off
- Impact on occupancy due to the out-of-time pile up (OOP)
 - Minor impact at 50ns but critical at 25ns:
 - → a few ns difference lead to $2\rightarrow$ 10 times more OOP
- Should be stable but can be check with a few minutes of deconvolution mode data:
 - Time delays in steps of 1.04ns (smallest possible adjustment)
 - Signal maximum must be at 0
 - Current timing is observed to be perfect and stable compared to previous years

- Track-based alignment working fine (100k aligment parameters!)
 - So well mastered that we are sensitive to sensor curvature
- Single sided silicon processing
 - curved sensors (specifications: < 100 μm).
- Visible in average track angle corrected residuals:

 $\langle \Delta W \rangle = \langle (U_{trk} - U_{hit}) / \tan \psi \rangle$

- Average amplitude in TOB: -30 μm (with relevant RMS).
- Sensor-by-sensor values determined in alignment:
 - hit position corrections let modules appear flat (as tracking expects).

Detector evolution with integrated luminosity

Pixel Leakage Current

Geometric issues also impact data rates → where readout issues emerge

Pixel Bias Scan

- Regular measurements of :
 - Detection efficiency
 - Charge collection efficiency vs bias voltage

• Layer 1 and layer 2 are type inverted.

Strip Leakage Current

- Increase with radiation damages :
 - Give a handle to measure accumulated irradiation
- Current measured module-by-module
- Average strips measurements agree with model (fluka) within 5-20%:
 - varying over time and detector region
 - Better agreement detector regions with temperature T < 20°C (strip tracker temperature not uniform)

Pixel Thresholds and Cluster Charge

- Pixel Thresholds:
 - Depend on the integrated luminosity
 - optimized during technical stops (End of 2011 run 1, Ju. 2012 TS 2, Sept. 2012 TS 3)
- Pixel Cluster Charge:
 - A) Distribution for each layer in pixel barrel
 - fitted to Landau distribution convoluted with Gaussian
 B) MPV extracted from fit and plotted vs Int. Lum.

B

UC

Pixel Lorentz angle

- Increase of the Lorentz angle with integrated luminosity
 - Determined using various techniques:
 - Grazing angle method
 - Alignment
 - Different impact of the irradiation on the results
- To be understood : Offset between z+ and z- side

Summary

- The CMS tracker worked well during the past years of data taking
- During the data taking, some channels were lost but :
 - Mainly expected to be recovered after LS1 in the pixel
 - Not problematic in the Strip given the number of layers
- The detector has a good performance :
 - Very good signal-to-noise ratio and detection efficiency
 - In spacial, momentum and vertexing resolution
- Achieved notably because of good alignment (sensitive up to the sensor curvature) and timing
- The aging of the detector follows expectations :
 - Single event upset :
 - Rate as expected and under control
 - Irradiation :
 - Models agree in shape for both sub-detector types
 - (40-70 % rescaling Pixel, 5-20 % agreement for Strip depending on the temperature)
- Maintenance work during shutdown:
 - Pixel recovery (100% in FPIX, >98% in BPIX), better centering
 - Lowering of the Strip temperature to counteract radiation effect
- We are getting ready for new adventures at higher energies ...

Pixel Modules

- n-in-n silicon sensor
- 52 x 80 = 4160 pixels by sensor
- Pixel size: 100µm x 150µm
- ReadOut Chip (ROC) designed by PSI and manufactured by IBM
- Automatic zero-suppression;
- 26 DACs to regulate settings, each pixel has a 4-bit DAC for fine adjustments (trimming)
- Double-column drain architecture:
 - Hits stored in a buffer until trigger confirmation
 - Single 25ns-wide bunch-crossing readout

Pixel SEU detection

- Two mechanisms to detect SEU
 - monitoring the off channels
 - searching the Out of Sync (OOS) errors

BPix_Bpl_SEC5_LYR1_LDR6F_MOD2_ROC4 BPix_Bpl_SEC7_LYR1_LDR8F_MOD3_ROC0 BPix_BpO_SEC8_LYR1_LDR10H_MOD4_ROC5 BPix_BpO_SEC8_LYR1_LDR9F_MOD3_ROC4 BPix BmO SEC7 LYR1 LDR8F MOD1 ROC10 BPix_BpO_SEC5_LYR1_LDR6F_MOD3_ROC6 BPix_BpO_SEC4_LYR1_LDR5F_MOD3_ROC7 BPix_BpO_SEC2_LYR1_LDR3F_MOD4_ROC10 BPix BpO SEC2 LYR1 LDR3F MOD3 ROC13 BPix_BpO_SEC1_LYR1_LDR2F_MOD3_ROC3 BPix_BmO_SEC1_LYR1_LDR2F_MOD1_ROC4 BPix_Bml_SEC1_LYR1_LDR1H_MOD1_ROC15 BPix_Bml_SEC1_LYR1_LDR1H_MOD1_ROC12 BPix_Bml_SEC1_LYR1_LDR1H_MOD2_ROC9 BPix_Bml_SEC1_LYR1_LDR2F_MOD4_ROC0 BPix_Bpl_SEC2_LYR1_LDR3F_MOD1_ROC5 BPix_Bml_SEC4_LYR1_LDR5F_MOD4_ROC2

Pixel analog current

- ROC Analog circuit current increases linearly with radiation damage
 - Slower preamplifier rise time
 - Higher pixel threshold
- Biggest operational concern: power
- supply current limit per channel
 - Limit 6 A, operate ~5.5 A
- Fixed by recalibration
- Possible mechanism
 - change in DAC setting meaning
 - · caused by bulk damage in diode used for reference voltage

Independent leakage current fits give good agreement in radial dependence Fitting function: a/x^b fitted parameter pixels (18.9 fb⁻¹) strips (4.7 fb⁻¹)

Pixels: beam spot offset allows measurements at different radii

Silicon Strip Modules

- Sensor
 - p⁺ implant in n-type silicon bulk
 - 512 or 768 strips
 - strip pitch p=80-205 m.
 - w/p = 0:25 (w: p+ implant width).
 - AC-coupled readout.
- Electronics on Hybrid
 - 4 or 6 APV readout chips.
 - DCU: leakage current, temperature,.
 - Multiplexed on 2 or 3 readout lines by MUX.

Strip readout

Tracker temperatures

- Pixel operates at 17° C in 2011 and 10° C in 2012
- Not all the strip detector regions have direct cooling

Silicon Strip Readout

- APV Chip
 - Analog readout every 25 ns.
 - 192 cell pipeline
 - Peak mode (signal height p),
 - CR-RC circuit (50 ns),
 - low noise,
 - robust for time misalignment
 - Deconvolution mode,
 - signal at t is weighted mean: $d_t = w_3 p_{t-2} + w_2 p_{t-1} + w_1 p_t$
 - shorter signal,
 - higher noise.
- Signal Frame: 2 APVs Interleaved
 - Headers and tick marks frame 2 x 128 analog signals
 - Send on external trigger

Strip Alignment : Modules with Curvatures and Kinks

- Effect on Track Reconstruction
 - Position corrections now applied in hit reconstruction.
 - Hits of tracks with large on module surface are most affected.
 - Pixel layer 1 for forward tracks |eta| > 2 (not the topic here).
 - Cosmic ray tracks:
 - average track fit probability vs d0 now almost flat.
 - Relevance for overall tracking:
 - importance of cosmic ray tracks for alignment (weak modes).

After curvature correction: \sim 5 µm offset in peak mode data. Why?

- If timing late: charge of sensor back-plane not collected.
 - → Sensor appears thinner by Δd , mean shifted by $\Delta w = \Delta d/2$.
- "Back-plane" corrections for deconvolution data calibrated with 2010 data: $\Delta d = 12 \ \mu m$ for TOB.
- Improved time alignment in 2011: 3 ± 1 ns in TOB.
- "Back-plane" correction not re-calibrated: tension peak vs deco.
- Alignment dominated by deconvolution mode data.
 - → Offset remains for peak mode data.

Strip Resolution

• We can determine an estimate for the most probable dE/dx value based on the measurements in the strip tracker modules traversed by a track, ie :

Where ci is the charge, per unit path length of silicon, of the ith hit associated to the track

• Kaon and Proton bands are well visible in both the Data and MC.

Pixel: beam gas events

- Beam-gas interactions: particles flying along z direction graze BPix modules, creating many hits
- Major issue during 2010: important source of downtime
- Solved with "busy mechanism":
 - Stop triggers until channel can catch up
 - Further optimization done on data acquisition settings and firmware to minimize dead time from mechanism
- LHC joint 18.5m from interaction point fixed during 2011-2012 shutdown
 - significant improvement

Lorentz angle determination

• Charge drift in B-field affects the measured hit position: $x=tan(\theta_{IA}^{shift}).d/2$

- To correct this effect most precisely: Lorentz angle θ_{LA}^{shift} calibration integrated in MILLEPEDE II alignment procedure.
- B-on and B-off data used simultaneously in alignment to disentangle calibration and alignment effects.
- Used 60 million tracks from full 2012 data: tracks of isolated muons, Z-> $\mu\mu$, cosmic ray muons (B-on and B-off), low p_t, B-off, pp data from August 2012.
- Lorentz angle in pixel barrel calibrated with granularity of:
 - 24 spatial parameters (3 layers x 8 rings)
 - 65 periods in time.

• Charge carriers production depth and displacement in local x estimated from track parameters

- Using well reconstructed tracks -> path through detector well known
- Obtain the drift distance of the electrons created at certain depth
- Tracks with shallow impact ("grazing") angle used
- Averaged over many tracks drift distance over production depth
- Fitted over the depth of the detector excluding edges
- tan (θ_{LA}) = slope

Curvature bias investigation with $Z{\rightarrow}\mu\mu$ decays

- Distortions of the tracker geometry can lead to a bias in the reconstructed track curvature $\kappa\mu\pm$ 1/p_{_T}
- Investigated using the reconstructed $Z \rightarrow \mu\mu$ mass, as a function of the muon direction and separating μ + and μ (since curvature bias has opposite effect on their p_{τ})
- Invariant mass distribution is fitted to a Breit-Wigner convoluted with a Crystal ball function (i.e. taking into account the finite track resolution and the radiative tail) for the signal plus an exponential background.

(Fit range is 75–105 GeV/c², Z⁰ width fixed to PDG value of 2.495 GeV/c².)

