

Belle II

Status of the Silicon Strip Vertex Detector of the Belle II Experiment

Thomas Bergauer (HEPHY Vienna)

Vertex 2013 Lake Starnberg

16 September 2013

Belle and Belle II

Components Sensors Electronics Mechanics and Cooling Ladder assembly Mockups Summary

Belle I at the KEKB accelerator (1999-2010)

Belle I:

- Measurements of CKM matrix elements and angles of the unitary triangle
- CP & T & CPT test
- Observation of direct CP violation in B decays
- probe for new sources of CPV

KEKB accelerator:

- Center of mass energy: Y(4S) resonance (10.58 GeV)
- High intensity beams (1.6 A & 1.3 A)
- Integrated luminosity of 1 ab⁻¹ recorded in total

e⁺ 4GeV 3.6 A

Belle II

New IR

SuperKEKB/Belle II Upgrade: 2010–2015

- 40-fold increase in peak luminosity to $8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1} \rightarrow 1 \times 10^{10} \text{ BB}$ / year
- 50-fold increase in integrated luminosity until 2023 w.r.t. Belle I
- Refurbishment of accelerator and detector required
 - nano-beams with cross-sections of ~10 µm x 60 nm
 - 2 cm diameter beam pipe at interaction region

16 September 2013

Belle Silicon Vertex Detector (SVD) until 2010

- 4 straight layers of 4" double-sided silicon detectors (DSSDs)
- Outer radius of r~8.8 cm
- Acceptance angle 17° ...150°
- Up to three 4" sensors were daisy-chained and read out by one hybrid located outside of acceptance region (VA1 chip)

Belle SVD limitations

- Previous SVD limitations were
 - occupancy

 (10%-18% in innermost layer)
 → need faster shaping or
 smaller detector elements
 - dead time
 → need faster readout and pipeline
- Belle II needs detector with
 - high background tolerance
 - pipelined readout
 - robust tracking
 - low material budget in active volume

Previous SVD is not suitable for Belle II !

New Layout for Belle II SVD (2015-)

Four layers with 6" doublesided strip detectors at larger radii and forward part

- Large, individually read out sensors
- FE readout electronics inside acceptance region
- Maintain low material budget
 - Lightweight mechanics
 - Thin cooling pipes (CO_2)
- Fast readout

Layer 3 to 6: 4 layers of double-sided strip sensors

Layer Two la DEPFE	1-2: byers of ET pixels		
···	Layer	Radius	Ladders
	6	135 mm	16
	5	104 mm	12
	4	80 mm	10
	3	38 mm	7

Current Status

- Transition from R&D to production phase
- Milestones defined by Belle II schedule
 - SVD ladder assembly Nov. 2013 Sept. 2014
 - Ladder mount: Sept. 2014 August 2015
 - SVD ready by August 2015
 - VXD (PXD+SVD) ready by January 2016
 - VXD installation June 2016

Components

- Sensors
- Front-end and backend electronics
- Mechanics design
- CO₂ cooling
- Ladder assembly and lab infrastructure
- Mockups

Belle and Belle II Components Sensors

Electronics Mechanics and Cooling Ladder assembly Mockups Summary

Double-sided strip sensors from 6" wafers

Sensor Properties:

- Double-sided with perpendicular strips
- AC-coupled readout with poly-silicon resistor
- N-bulk, 300/320 micron thickness
- Three layouts only:
 - Rectangular small for layer 3 (HPK)
 - Rectangular large for layers 4-6 (HPK)
 - Trapezoidal for forward layers 4-6 (Micron)

	Readout strips(p/R∳)	Readout strips(n/z)	Readout pitch (p/Rø)	Readout pitch(n/z)	Sensors # (+ spares)	Active area (mm ²)
Large	768	512	75 µm	240 µm	120+18	122.90x57.72 =7029.88
Trapezoidal	768	512	50-75 µm	240 µm	38+6	122.76x(57.59+38.42) /2=5893.09
Small	768	768	50 µm	160 µm	14+4	122.90x38.55 =4737.80
16 September 2	2013	Thomas Be	ergauer (HEPHY	Vienna)		10

Rectangular sensors (HPK)

- Small DSSDs
 - Delivery of 24 pcs. scheduled for end of September
 - Two mechanical samples available
- Large DSSDs:
 - Production finished
 - 150 pcs in hand

Trapezoidal Sensors for Forward Region

eta distribution for atoll p-stop

Charge accumulation in unimplanted region

16 September 2013

Signal-to-noise-ratios

- Test sensors have been Gamma-irradiated with Co-60 (70 Mrad) in Mol (Belgium)
- Tested before and after at CERN beam test (H6A 120 GeV hadrons)

Combined p-stop

- Dark colors: non-irradiated, Light colors: irradiated
- Atoll pattern (half-wide) performs best, both irradiated and nonirradiated
 - Chosen for final sensor, 100 wafers currently being processed by Micron

Beam test results

- Performance of full modules verified in several beam tests at CERN (2008-2012)
 - Including CO₂ cooling
 - Using EUDET and own beam telescope

Double Origami module

FW wedge	module
----------	--------

Irrad	Origami #4		Origami #3		Wedge #1	
	р	n	р	n	р	n
Before	12.2	22.7	12.0	23.4	14.9	13.0
After	11.9	16.0	12.6	23.4	12.6	12.0

16 September 2013

Belle and Belle II Components Sensors Electronics Mechanics and Cooling Ladder assembly Mockups Summary

Readout System Concept

16 September 2013

Readout Chip: APV25

- Developed for CMS (LHC) by Imperial College London and Rutherford Appleton Lab
 - 70.000 chips installed
- 0.25 µm CMOS process (>100 MRad tolerant)
- 128 channels
- 192 cell analog pipeline
 → almost no dead time
- 50 ns shaping time \rightarrow low occupancy
- Multi-peak mode (read out several samples along shaping curve)
- Noise: 250 e + 36 e/pF
 → must minimize capacitive load!!!
- Thinning to 100µm successful

Origami Chip-on-Sensor Concept

- Chip-on-sensor concept for double-sided readout
- Flex fan-out pieces wrapped to opposite side (hence "Origami")
- All chips aligned on one side → single cooling pipe

APV25 – Hit Time Reconstruction

- Possibility of recording multiple samples (x) along shaped waveform (feature of APV25)
- **Reconstruction of** Ś Peak time precision vs. SNR peak time (and 10 amplitude) SPS June 2008 9 KEK Nov 08 standard by waveform fit KEK Nov 08 doubled IPRE 8 KEK Nov 08 31.8 Mhz Signal [e Using LUT in FPGA SPS Aug 09 run042 7 SPS Aug 09 run043 SPS Aug 09 run6873 Is used to 6 l s n s n s n SPS Aug 09 run012 SPS Aug 09 run019 remove off-time 5 Theory 4 background hits 3 2...3 ns RMS 2 accuracy at 1 typical S/N 0

5

10

15

Cluster SNR

20

25

0

30

Occupancy Reduction Belle -> Belle II

Belle and Belle II Components Sensors Electronics Mechanics and Cooling Ladder assembly Mockups Summary

SVD Ladders

- Basic element "atomic unit" is one ladder
- Only FW and BW module can be assembled independently
- No single Origami module with one sensor possible

Material Budget of a ladder

- Largest peak contribution by
 - Cooling pipe
 - Support ribs

Components:

- Single cooling pipe
- Thinned APV25 (100µm)
- 3-layer flex circuit
- Connection to Strips:
 - PA on top side
 - wrapped PA for bottom
- 1mm Airex sheet
- 6" DSSD
- CF support ribs

• Average Material Budget: 0.59%X₀

Support Ribs

- 3mm Airex core with laminated
 0.15mm CF sheets
- Very stiff, yet lightweight thanks to the sandwich construction

CO₂ cooling system

- IBBelle Prototype "MARCO" (Multi-Purpose Apparatus for Research in CO₂)
 - Power ~ 1 kW
- Based on concept by NIKHEF (B. Verlaat)
- CO₂ plant shared with PXD
- Development in collaboration between PXD group (MPI), CERN and NIKHEF
- Ladder production sites uses small open (blow) CO₂ system

Vienna open CO₂ system

Belle and Belle II Components Sensors Electronics Mechanics and Cooling Ladder assembly Mockups Summary

SVD ladder assembly flow

- Three modules types:
 - Forward (FW)
 - Backward (BW)
 - Origami
- Ladder assembly sites:

Layer	Institute
3	Melbourne (AUS)
4	TIFR India @ IPMU
5	HEPHY Vienna (AT)
6	Kavli IPMU (Japan)
FW & BW	INFN Pisa (possibly)

Assembly Jigs

Huge number of different jigs (up to 17) necessary:

Nr.	Jig name	Purpose of jig	Status (L5)
1	Assembly base	Align jigs to each other	designed
2	Assembly bench	Carry Origami sensor, align jigs	designed
2.1	Forward sensor inlay	Carry forward sensor during assembly	
2.2	Backward sensor inlay	Carry backward sensor during assembly	
2.3	Origami sensor inlay	Support Origami sensors	
3	Sensor jig	Fix sensors to attach bottom-side pitch adapters	produced
4	PA1 jig	Align and glue PA1	produced
5	PA2 jig	Align and glue PA2	produced
6	xytheta stage	Precise alignment of sensors	
7	Airex jig	Align and attach Airex sheet	
8	Origami alignment jig	Align Origami flexes	
9	Origami ce jig	Pick up and glue Origami ce flex	
10	Origami -z jig	Pick up and glue Origami -z flex	
11	PF2 jig	Attach pitch adapter (PF2)	
12	PB2 jig	Attach pitch adapter (PF2)	
13	Slant jig	Glue forward sensor onto ribs	
14	Backward jig	Glue backward sensor onto ribs	
15	Rib jig	Mount and align ribs	
16	CO2 clamp jig	Attach CO2 cooling pipe clamps	designed

	СММ	XYZ0-stg	bench	base	Sensor-jig	Status
Melbourne	Mitsutoyo QV-PRO302	KIPMUdesign+ 1comp	1	Draft design	Draft design	
TIFR	Sharing with KIPMU	Sharing	manufacturing	1	1	
HEPHY	Mitsutoyo Euro-C776	In progress	designed	designed	1	
KIPMU	Mitsutoyo QV-606	1	1	1	1	Finalizing?
INFN	Mitsutoyo F604	designing	-	-	designing	

igs		XYZÐ-stage
Sens	or jig	
	•	Assembly base
Sensor-jig Draft design	Status	
1		
1		12 49: 1
1	Finalizing?	0 0
designing		Assembly bench

16 September 2013

Alignment of Jigs

- Using linear bushings (+0/-13µm) & precision pins (g6)
- Assembly base & bench are reference
 - All linear bushings are fixed bearings \rightarrow high precision holes (H7)
- All other jigs are aligned to them, e.g. Sensor jig

Ladder assembly equipment

- Coordinate Measurement machines (Mitutoyo)
- Glue dispensing robots
 - CMM used as glue robot in Vienna
- Fully-automatic wire bonders
- (lot of) manpower and ideas

Automatic wire bonder Choonpa Co. REBO-7W IPMU(borrowed KEK)

HEPHY, TIFR)

16 September 2013

Ladder assembly procedure

alignment w/ XYZθ-stage

- Two weeks per ladder expected
- Bonding/glue-curing interlaced

Assembly-jig

 Wire bonding between DSSD n-side and ORIGAMI PCB is done.
 Pitch adapters from P-side are wrapped and glued to top of ORIGAMI.
 The high-density wire bonding between the Pitch adapter to the APV25 chip is done.

Next steps are most difficult and require care.

Finish

Animation of (simplified) procedure

Thomas Bergauer (HEPHY Vienna)

DSSD

Belle and Belle II Components Sensors Electronics Mechanics and Cooling Ladder assembly Mockups

Summary

Mockup IR-PXD-SVD

Going real!

PXD+SVD Testbeam @ DESY

- Test of "full" VXD
 - 2 Layers DEPFET
 - All 4 layers of SVD (one sensor per layer only)
 - Inside PCMAG superconducting magnet
 - MARCO CO₂ cooling plant
 - Full readout chain
- 4 weeks beamtime at DESY TB24 in January 2014
 - Connectivity test end of June in Vienna to test connection between SVD FADC, FTB, DataCon
 - Installation in zone starting end of November 2013

Belle and Belle II Components Sensors Electronics Mechanics and Cooling Ladder assembly Mockups Summary

Summary

- SuperKEKB will be the highest luminosity machine in the world
- Belle II detector will consist of new, enlarged Silicon Vertex Detector
 - 2 layers DEPFET Pixels (PXD) and
 - 4 double-sided strip layers (SVD)
- Strip Detector (SVD)
 - Double Sided Strip Detectors

- Optimal p-stop geometry identified by SNR measurements before and after irradiation
- Chip-on-sensor readout scheme, named Origami, for outermost three layers for low material budget, using CF ribs and CO₂ cooling
- Readout with hit time reconstruction for improved background tolerance
- Mass production of ~50 ladders starts this fall, SVD ready by 2015

The End.

Backup Slides follow

Belle Detector (1999–2010)

Belle II Detector

K_L and muon detector: Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

EM Calorimeter: CsI(TI), waveform sampling (baseline) (opt.) Pure CsI for end-caps

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

Spatial Resolution of the Belle II Detector

Sensor Types and Vendors

Layer	# of Ladders	Rect. Sensors [narrow]	Rect. Sensors [wide]	Wedge Sensors	APVs
6	16	0	64	16	800
5	12	0	36	12	480
4	10	0	20	10	300
3	7	14	0	0	168
Sum:	45	14	120	38	1748

16 September 2013

HPK Pinholes

Sensor Parameters

Rectangular Sensors

Quantity	Large sensor	Small sensor
# strips p -side	768	768
# strips n -side	512	768
# intermediate strips p -side	767	767
# intermediate strips n -side	511	767
Pitch <i>p</i> -side	$75\mu{ m m}$	$50\mu{ m m}$
Pitch <i>n</i> -side	$240\mu{ m m}$	$160\mu{ m m}$
Area (total)	$7442.85{ m mm^2}$	$5048.90{ m mm^2}$
Area (active)	$7029.88 \mathrm{mm^2}$ (94.5%)	$4737.80 \mathrm{mm^2}$ (93.8%)

Quantity	Value
Base material	Si <i>n</i> -type $8 \mathrm{k}\Omega \mathrm{cm}$
Full depletion voltage FD	$< 120 \mathrm{V}$
Breakdown voltage	$\geq { m FD} + 50 { m V}$
Polysilicon resistor	$4 M\Omega$ (min.), $10 M\Omega$ (typ.)
Coupling capacitance	$> 100 \mathrm{pF}$
Breakdown voltage of AC coupling	$> 20 \mathrm{V}$
Bias leak current at FD	$1 \mu A$ (typ.), $10 \mu A$ (max.)

Trapezoidal Sensors

Quantity	Value
# strips <i>p</i> -side	768
# strips <i>n</i> -side	512
# intermediate strips $p-side$	767
# intermediate strips $n-side$	511
Pitch <i>p</i> -side	$75\dots 50\mu{ m m}$
Pitch <i>n</i> -side	$240 \mu m$
Area (total)	$6382.6\mathrm{mm^2}$
Area (active)	$5890 \mathrm{mm^2} (92.3\%)$
	Layer 6: 21.1°
Slant angles	Layer 5: 17.2°
	Layer 4: 11.9°

Quantity	Value			
Base material	Si <i>n</i> -type $8 \text{ k}\Omega \text{cm}$			
Full depletion voltage FD	40 V (typ.), 70 V (max.)			
Operation voltage	$FD \dots 2 \times FD$			
Breakdown voltage	$\geq 2.5 imes ext{FD}$			
Polysilicon resistor	$10 \text{ M}\Omega \text{ (min.)}, 15 \pm 5 \text{ M}\Omega \text{ (max.)}$			
Interstrip resistance, p -side	$100 \text{ M}\Omega \text{ (min.)}, 1 \text{ G}\Omega \text{ (typ.)}$			
Interstrip resistance, <i>n</i> -side	$10 \mathrm{M\Omega}$ (min.), $100 \mathrm{M\Omega}$ (typ.)			

16 September 2013

Current Barrel Layout

Layer	Sensors/ Ladder	Origamis/ Ladder	Ladders	Length [mm]	Radius [mm]	Slant Angle [°]
3	2	0	7	262	38	0
4	3	1	10	390	80	11.9
5	4	2	12	515	104	16
6	5	3	16	645	135	21.1

Origami Prototype Modules

• Single Origami module (layer 4)

• Double Origami module (layer 5)

Material budget

DSSD+ Origami	Rib	DSSD	Airex sheet	Origami	CO2 Cooling	100 μm Glue	Total
HPK+10RIGAMI	0.035	0.340	0.055	0.133	0.037	0.033	0.593
HPK+2ORIGAMI	0.035	0.340	0.055	0.266	0.037	0.033	0.733
Micron	0.035	0.320	0.055	0	0	0.011	0.421
Micron+ORIGAMI	0.035	0.320	0.000	0.133	0	0.033	0.576

- PA/PE/PB/SMD/ are neglected.
- Thickness of epoxy glue in ladder assembly is assumed to be 100 μ m, or, 0.033 % X₀.

Breakdown of material budget

Comparison VA1TA – APV25

VA1TA (SVD)

- Commercial product (IDEAS)
- Tp = 800ns (300 ns 1000 ns)
- no pipeline
- <10 MHz readout
- 20 Mrad radiation tolerance
- noise: ENC = 180 e + 7.5 e/pF
- time over threshold: ~2000 ns
- single sample per trigger

APV25 (Belle-II SVD)

- Developed for CMS by IC London and RAL
- Tp = 50 ns (30 ns 200 ns)
- 192 cells analog pipeline
- 40 MHz readout
- >100 Mrad radiation tolerance
- noise: ENC = 250 e + 36 e/pF
- time over threshold: ~160 ns
- multiple samples per trigger possible (Multi-Peak-Mode)

Status of Belle II Readout Electronics

- Pre-production is driven by DESY beam test (January 2014)
 - first version of all boards to be used there
- Design is done; most parts of hardware exist already

Cooling Boundary Conditions

- Power dissipation per APV: 0.40 W
- 1 Origami sensor features 10 APVs

heat amount [W]	APV	pipe	end- ring	cone (L3/4)	cone (L5+6)	cable	Origami	hybrid	total
end-ring (FWD)	92.8	20.0	7.0	18.9	13.8	29.2		13.3	195.0
end-ring (BWD)	92.8	15.0	9.1	32.2	6.8	29.2		13.3	198.4
Origami (L6)	94.0	19.6					7.4		121.0
Origami (L5+4)	68.0	20.0					5.2		93.2
total	347.6	74.6	16.1	51.1	20.6	58.4	12.6	26.6	607.6

•Total SVD power dissipation: 607 W

Baseline Schedule

Glue Dispension

Thickness of PA2+glue

Idea of Ladder Mount Stage

Rotation axis with encoder

