

The silicon detector systems of the Compressed Baryonic Matter Experiment at FAIR

M. Deveaux, Goethe University Frankfurt and CBM on behalf of the CBM collaboration.

What is CBM?

CBM is a heavy ion experiment to scan the phase diagram of hadronic matter for phase transitions and much more...

Realization of FAIR

Facility for Anti-Proton and Ion Research, former GSI, Darmstadt

M. Deveaux, Vertex 2013, Lake Starnberg, Germany, 16-20 September 2013

The strategy of CBM

Poor theory guidance, physics signatures not clear => Build "universal detector" as known from LHC

Intrinsically retundant => May spot systematic errors
 Comparable measurements => Eases physics interpretation
 Complementary to SPS, RHIC, LHC experiments

Hadron Spectrometer

Electron Spectrometer

Muon Spectrometer

The measurement challenge

minimum bias Au+Au collisions at 25 AGeV (from HSD and thermal model)

J. Heuser, QM2012

Needs very light and fast silicon and vertex detectors Need very high collision rates: $10^5 - 10^7$ /s (Au-Au)

8

The Micro Vertex Detector

Requirements on the CBM Vertex Detector

The CBM – MVD should

- Have 3-4 layers
- ~0.3% X_0 (first station)
- ~0.5% X_0 (other stations)
- Handle ~10⁵ Au-Au coll/s
- ~40 hits/mm², ~10⁸/cm²/s
- Operate in target vacuum
- Cooling <1 W/cm²

Performances of MAPS (2013)

Learn more: Talk of Marc Winter

All requirements demonstrated with dedicated sensors.

Next step: Do it with ONE sensor

Remaining issues:

- Factor 2-3 in readout speed
- Extend internal bandwidth by factor of 5
- \Rightarrow In reach of today's 0.18 µm CMOS technology

	Required	Hybrid pixels	CCD	MAPS** (2013)
Single point res. [µm]	~ 5	~ 30	~ 5	3.5
Material budget [X ₀]	~ 0.3%	1%	~0.1%*	~0.05%*
Time resolution [µs]	few 10	0.025	~100	32
Rad. hardness [n/cm ²]	> 10 ¹³	>> 10 ¹⁴	<< 10 ¹⁰	> 3x10 ¹⁴

** Best of specialized sensors *Sensor only

Integration concept of the MVD

Manuary an exetion required light and estimate

- Vacuum operation requires light and actively cooled device.
- Use cooling support from diamond to move heat out of acceptance
- Put heat sink and FEE outside acceptance

M. Deveaux

Integration concept of the MVD

Aim: Validate the cooling concept with TPG

Observation:

- Temperature gradient on the station appears acceptable
- A 150 µm CVD diamond support seems sufficient for station 1
- Diamond => liquid heat transport needs optimization

Vacuum compatible cooling concept for 1W/cm² seems robust.

Vacuum compatibility

First tests on vacuum:

Goal: Absence of air

ssues:

- Outgasing
- Mech. stress due to cavities

Observations with 50µm dummies:

- No significant outgasing (test not very sensitive)
- Cavities of ~0.5mm can be tolerated

Study in progress, so far no problems

The CBM-MVD prototype

M. Deveaux

1 11

*) CVD and AI with cut-outs were tested for the reference plandes of the telescope. The prototype bases on a 100% filled CVD layer.

CVD^{*}

 AI^*

BONDEDDDDD Chip M26-2-> Pin Mor Probaca

M. Deveaux

Prototype: Beam test setup

Performances:

- Up to 10 MIMOSA-26 running @10k frames/s, 3.5µm resolution.
- Free-running, scalable DAQ based on HADES TRB 100 MB/s.
- Actively cooled prototype (<0.3% X₀)
- Passively cooled telescope arms (0.05% X₀)

Some first results

Result so far for the DUT:

```
σ_x= 3.3 μm
σ_y= 3.7 μm
```

All performance plots very promising, analysis is being continued

The Silicon Tracking System

Requirements:

- dp/p ~ 1%
- 95% track eff. (> 1 GeV)
- 10 MHz Au-Au
 - Self triggered
 - 20 ns shaping time
- < 10¹⁴n_{eq}/cm² per year

Solution:

- 8 silicon strip stations
- $X_{\text{Station}} = \sim 1\% X_0$
- Electronics outside acceptance

The Silicon Tracking System

The STS-Sensors

Double sided p-n-n strip detectors

- 300 µm silicon
- 7.5° stereo angle, 58µm pitch
- 6.2 cm wide, 1024 strips
- Strip length: 2cm, 4cm, 6 cm
- AC coupled read-out
- Few 100V operation voltage
- $10^{14}n_{eq}/cm^2$ rad. tolerance

Strips reaching the border are continued on the other side

⇒ Needs double metal layer or external cable

M. Deveaux, Vertex 2013, Lake Starnberg, Germany, 16-20 September 2013

The STS-Sensors

Under study: replacement of 2nd metal layer by cable

Prototype	Year	Vendor	Processing	Size [cm ²]	Description
CBM01	2007	CiS	double-sided	5.5 imes 5.5	±7.5 deg
CBM03	2010	CiS	double-sided	6.2 × 6.2	±7.5 deg
CBM03'	2011	CiS	Single/CBM03	6.2 × 6.2	test for CBM05
CBM05	2013	CiS	double-sided	6.2 × 6.2	7.5/0 deg full-size
CBM05H4	2013	Hamamatsu	double-sided	6.2 × 4.2	7.5/0 deg full-size
CBM05H2	2013	Hamamatsu	single-sided	6.2 × 2.2	7.5/0 deg full-size

Readout: STS-XYter

- Derived from N-XYter
- Self triggered
- Intelligent back end
- Two level discriminator

fast \Leftrightarrow low noise \Leftrightarrow low power dissipation

-	Channels, pitch	128 + 2 test	
and the summer state	Channel pitch	58	
	Input signal polarity	+ and -	
	Input current	10 nA	
inner m	Noise at 30 pF load	900 e ⁻	
	ADC range	16 fC, 5 bit	
	Clock	250 MHz	
	Power dissipation	< 10 mW/channel	
	Timestamp resolution	< 10 ns	
	output interface	4 × 500 Mbit/s LVDS	

design V1.0 @ AGH Kraków UMC 180 nm CMOS produced 2012

die size $6.5 \text{ mm} \times 10 \text{ mm}$

M. Deveaux, Vertex 2013, Lake Starnberg, Germany, 16-20 September 2013

Interation concept

FEE outside acceptance

- 8 STS-XYter per FEE-board
- Floating electronics
- Connection to sensor: Micro-cable, tab bonding
- Data: Optical links

FEE boxes: 10 boards 200W power

Cooling concept: FEE-Boxes: CO₂ cooling (42kW)

Sensors: Gas cooling

и. Deveaux, Vertex 2013, Lake Starnberg, Germany, 16-20 September 2013

Ladder – Mechanical Prototype

Some test results

M. Deveaux, Vertex 2013, Lake Starnberg, Germany, 16-20 September 2013

Some test results

silicon microstrip sensors selftriggering front-end electronics DAQ DCS online monitoring tracking

M. Deveaux, Vertex 2013, Lake Starnberg, Germany, 16-20 September 2013

CBM

- is a next generation fixed target heavy ion experiment at FAIR
- aims for rare e+/e-, $\mu+/\mu-$ and hadronic probes (incl. open charm)

The MVD

- Operate at ~ 10^5 Hz (Au-Au) or ~ 10^7 Hz (p-A)
- 3-4 vacuum compatible stations based on diamond support
- 0.3-0.5% X₀
- Sensors: CMOS Monolithic Active Pixel Sensors

The STS

- Operate at up to $\sim 10^7$ Hz (Au-Au)
- 8 Stations, carbon fibre support
- <1% X₀, FEE outside acceptance

Prototypes were sucessfully tested,

- aim for production readiness mid 2015,
- production 2015-17,
- commissioning/first operation 2017-18

CBM Technical Design Reports approved

eptember 2013