

The silicon detector systems of the Compressed Baryonic Matter Experiment at FAIR

M. Deveaux, Goethe University Frankfurt and CBM on behalf of the CBM collaboration.

What is CBM?

CBM is a heavy ion experiment to scan the phase diagram of hadronic matter for phase transitions and much more…

Realization of FAIR

Facility for Anti-Proton and Ion Research, former GSI, Darmstadt

M. Deveaux, Vertex 2013, Lake Starnberg, Germany, 16-20 September 2013

The strategy of CBM

Poor theory guidance, physics signatures not clear => Build "universal detector" as known from LHC

 \checkmark Intrinsically retundant \checkmark => May spot systematic errors Comparable measurements => Eases physics interpretation Complementary to SPS, RHIC, LHC experiments

Hadron Spectrometer

Electron Spectrometer

Muon Spectrometer

The measurement challenge

minimum bias Au+Au collisions at 25 AGeV (from HSD and thermal model)

J. Heuser, QM2012

Heuser, QM2012

Need very high collision rates: $10^5 - 10^7$ /s (Au-Au) 8^8 Needs very light and fast silicon and vertex detectors

The Micro Vertex Detector

Requirements on the CBM Vertex Detector

The CBM – MVD should

Welliam them with the novelless them

- Have 3-4 layers
- \sim 0.3% X_0 (first station)
- \sim 0.5% X_0 (other stations)
- Handle \sim 10⁵ Au-Au coll/s
- $~240 \; \text{hits/mm}^2, \; ~210^8/\text{cm}^2/\text{s}$
- Operate in target vacuum
- Cooling <1 W/cm²

Performances of MAPS (2013)

Learn more: Talk of Marc Winter | **CMOS** technology

All requirements demonstrated with dedicated sensors.

Next step: Do it with ONE sensor

Remaining issues:

- Factor 2-3 in readout speed
- Extend internal bandwidth by factor of 5
- \Rightarrow In reach of today's 0.18 µm

** Best of specialized sensors *Sensor only

Integration concept of the MVD

Geometry of MVD-stations

Vacuum operation requires light and actively cooled device.

- Use cooling support from diamond to move heat out of acceptance
- Put heat sink and FEE outside acceptance

M. Deveaux

Integration concept of the MVD

Aim: Validate the cooling concept with TPG

Observation:

- Temperature gradient on the station appears acceptable
- A 150 µm CVD diamond support seems sufficient for station 1
- Diamond => liquid heat transport needs optimization

Vacuum compatible cooling concept for 1W/cm² seems robust.

Vacuum compatibility

First tests on vacuum:

• Goal: Absence of air

Issues:

- **Outgasing**
- Mech. stress due to cavities

Observations with 50µm dummies:

- No significant outgasing (test not very sensitive)
- Cavities of ~0.5mm can be tolerated

Study in progress, so far no problems

The CBM-MVD prototype

M. Deveaux

*) CVD and Al with cut-outs were tested for the reference plandes of the telescope. The prototype bases on a 100% filled CVD layer.

 $\frac{1}{2}$

CVD^{*}

Al*

 $\frac{00}{00}$ BOND ED 0000

M. Deveaux

17

Prototype: Beam test setup

Performances:

- Up to 10 MIMOSA-26 running @10k frames/s, 3.5µm resolution.
- Free-running, scalable DAQ based on HADES TRB 100 MB/s.
- Actively cooled prototype $(<0.3\% X_0)$
- Passively cooled telescope arms $(0.05\%~X_0)$

M. Deveaux 18

Some first results

Result so far for the DUT:

σx= 3.3 µm σy= 3.7 µm

All performance plots very promising, analysis is being continued

M. Deveaux

The Silicon Tracking System

Requirements:

- $dp/p \sim 1\%$
- 95% track eff. (> 1 GeV)
- 10 MHz Au-Au
	- Self triggered
	- 20 ns shaping time
- ϵ 10¹⁴n_{eq}/cm² per year

Solution:

- 8 silicon strip stations
- $X_{\text{Station}} = -1\% X_0$
- Electronics outside acceptance

The Silicon Tracking System

The STS-Sensors

Double sided p-n-n strip detectors

- 300 µm silicon
- 7.5° stereo angle, 58µm pitch
- 6.2 cm wide, 1024 strips
- Strip length: 2cm, 4cm, 6 cm
- AC coupled read-out
- Few 100V operation voltage
- $10^{14}n_{eq}/cm^2$ rad. tolerance

Strips reaching the border are continued on the other side

 \Rightarrow Needs double metal layer or external cable

M. Deveaux, Vertex 2013, Lake Starnberg, Germany, 16-20 September 2013 22

The STS-Sensors

Under study: replacement of 2nd metal layer by cable

Readout: STS-XYter

- Derived from N-XYter
- Self triggered
- Intelligent back end
- Two level discriminator

fast \Leftrightarrow low noise \Leftrightarrow low power dissipation

UMC 180 nm CMOS die size 6.5 mm × 10 mm design V1.0 @ AGH Kraków produced 2012

Interation concept

FEE outside acceptance

- 8 STS-XYter per FEE-board
- Floating electronics
- Connection to sensor: Micro-cable, tab bonding
- Data: Optical links

FEE boxes: 10 boards 200W power

Cooling concept: FEE-Boxes: $CO₂$ cooling (42kW)

Sensors: Gas cooling

M. Deveaux, Vertex 2013, Lake Starnberg, Germany, 16-20 September 2013 25

Ladder – Mechanical Prototype

Some test results

M. Deveaux, Vertex 2013, Lake Starnberg, Germany, 16-20 September 2013 27

Some test results

silicon microstrip sensors selftriggering front-end electronics DAQ **DCS** online monitoring tracking

M. Deveaux, Vertex 2013, Lake Starnberg, Germany, 16-20 September 2013 28

CBM

- is a next generation fixed target heavy ion experiment at FAIR
- aims for rare $e+e-$, $\mu+\mu$ and hadronic probes (incl. open charm)

The MVD

- Operate at \sim 10⁵ Hz (Au-Au) or \sim 10⁷ Hz (p-A)
- 3-4 vacuum compatible stations based on diamond support
- 0.3-0.5% X_0
- Sensors: CMOS Monolithic Active Pixel Sensors

The STS

- Operate at up to \sim 10⁷ Hz (Au-Au)
- 8 Stations, carbon fibre support
- \lt 1% X_0 , FEE outside acceptance

Prototypes were sucessfully tested,

- aim for production readiness mid 2015,
- production 2015-17,
- commissioning/first operation 2017-18 eptember 2013 29

CBM Technical Design Reports approved