

CMS Outer Tracker Upgrade Plans

Doris Eckstein

for the CMS Tracker Collaboration

Vertex 2013, Lake Starnberg, Germany, 16-20 September 2013

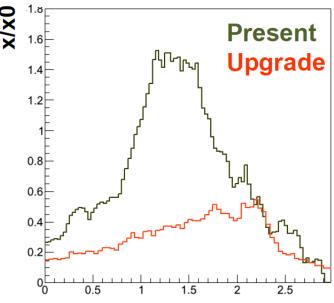
Outline

- Upgrade of CMS
- Tracker
 - requirements
 - concept
 - geometry
- Module development
- Sensor development
 - HPK Campaign
 - Plans
- Summary

CMS Tracker Upgrade - Timeline

2013	Long	 Consolidation: Improvement of tracker thermal and humidity insul New beam pipe Improvement of tracker thermal and humidity insul New beam pipe 		
2014	Shutdown 1	 New beam pipe Installation of pixel test slice 		
2015	Data taking	aparation at lawer temperature		
2016	Data taking	operation at lower temperature		
	Technical stop	Installation of new CMS phase-1 pixel detector		
2017	"Phase-1"			
2018	LS2			
2019	Data taking	Evolungo of innormost pivol lover ofter a 250fb-1		
2020	"Phase-1" $\approx 500 \text{ fb}^{-1}$	Exchange of innermost pixel layer after ~ 250fb ⁻¹		
2021	~ ≈ 500 15			
2022	LS3	Installation of a new CMS tracker		
2023	LOS	Phase-2 pixel detectorPhase-2 outer tracker		
2024	Data taking "Phase-2"	Track trigger		
↓	$\approx 3000 \text{ fb}^{-1}$	Doris Eckstein CMS Outer Tracker Upgrade Plans Vertex 2013, 17 September 2013 Page 3		

Requirements

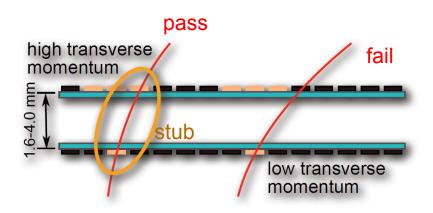

- radiation hardness
 - aim for 3000fb⁻¹
 - > sensors have to be radiation hard and thus cooled to -20°C
- granularity
 - resolve up to 200 collisions per bunch crossing, keep occupancy at % level

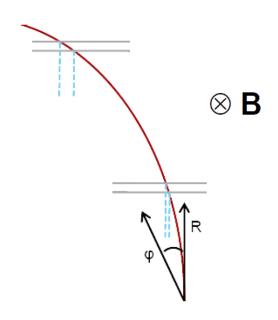
Increased

channel count

- → much shorter strips required
- improve tracking performance
 - improve performance at high pT
 - → reduce the average strip pitch
 - improve performance at low pT and reduce rate of secondary interactions
 - reduce material
- input to Level-1 trigger
 - μ, e and jet rates exceed 100kHz at high luminosity
 - increasing thresholds would reduce physics performance
 - need tracker information already in Level-1 trigger decision

Material budget estimate



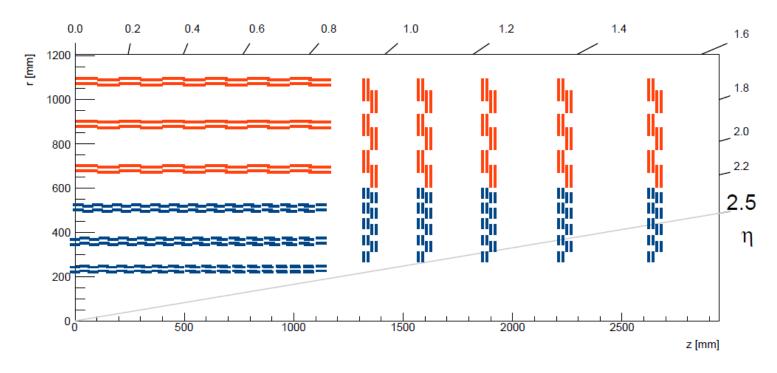

η

General Concept of Phase-2 Outer Tracker Modules – I

- modules provide at the same time information
 - to L1 Trigger (at 40MHz)
 - as "read out data" after L1 decision (at 100kHz)
 - → the whole tracker sends out sparsified data at each bunch crossing
- p_T modules modules with p_T discrimination
 - exploit bending in strong magnetic field
 - two closely spaced sensors read out by a single readout chip
 - correlate signals, look at cluster size
 - → stubs sent out if within p_T cut

- sensor spacing and window optimized for best performance
 - same geometrical cut corresponds to different p_T

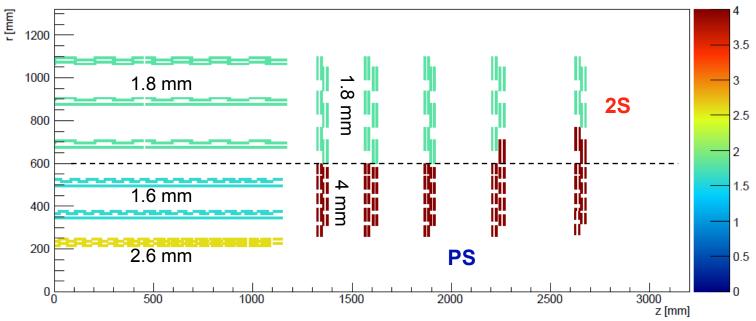
General Concept of Phase-2 Outer Tracker Modules -II


- binary readout CBC
- low power giga-bit transceiver (LP-GBT) as data link
 - currently under development
 - integrated at module level
- powering via DC-DC conversion
 - already used in phase-1 pixel upgrade
 - input current at higher voltage (~10V) reduces conductor cross-section
 - substantial reduction of material budget

see talk of Lutz Feld

- integrated at module level
- two different module types
 - different sensor spacings are treated as ,variants' of one module type with only minimum changes
 - requires optimization of only two designs
- evaporative CO₂ is the baseline cooling system
 - experience within CMS is being gained with the phase-1 pixel upgrade

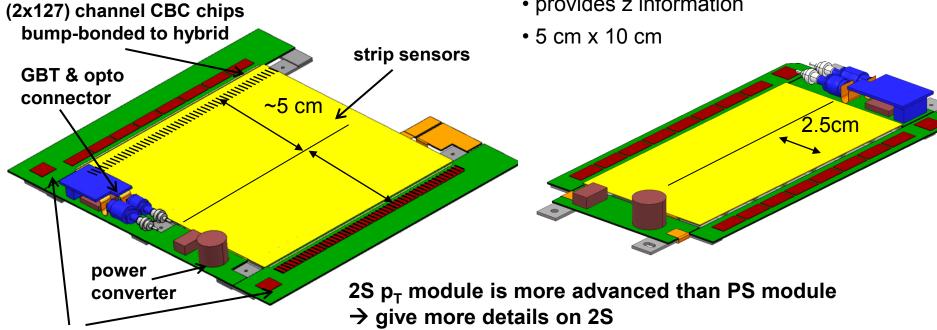
Baseline layout



- baseline layout with 6 barrel layers and 5 endcap disks
 - pixelated modules at r < 60 cm stack of pixel and strip sensor (PS)</p>
 - stack of two strip sensors at r > 60 cm (2S)

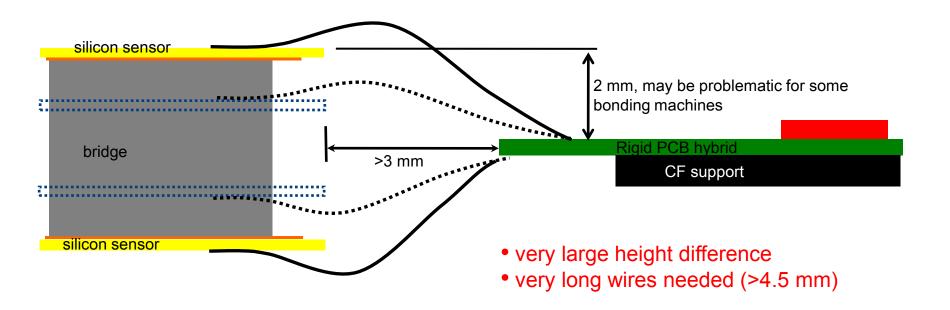
Baseline layout – module configuration

- baseline layout with 6 barrel layers and 5 endcap disks
 - pixelated modules at r < 60 cm stack of pixel and strip sensor (PS)</p>
 - stack of two strip sensors at r > 60 cm (2S)
- > PS modules
 - sensor spacings: 1.6 mm, 2.6 mm and 4 mm
- > 2S modules
 - sensor spacings: 1.8 mm and 4 mm

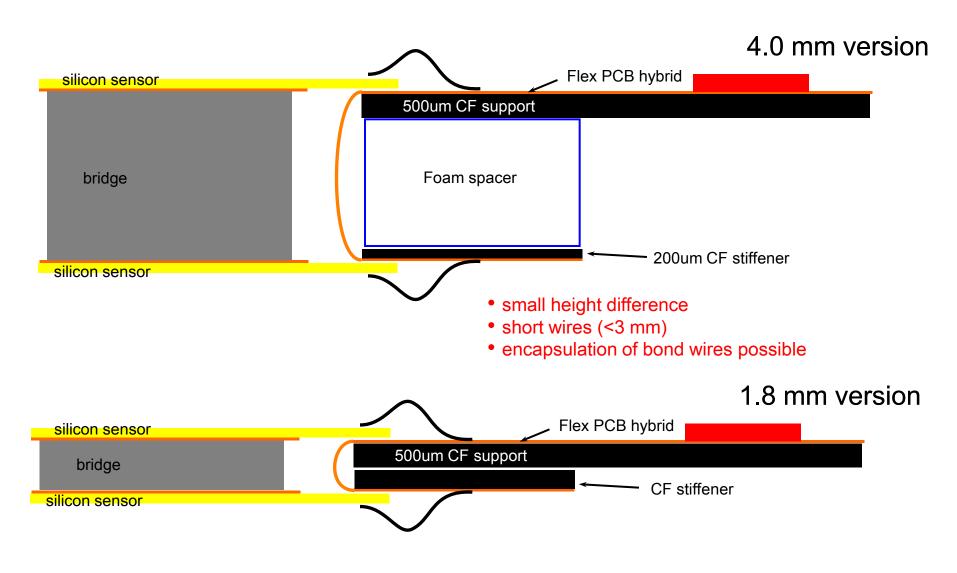


The Outer Tracker Modules

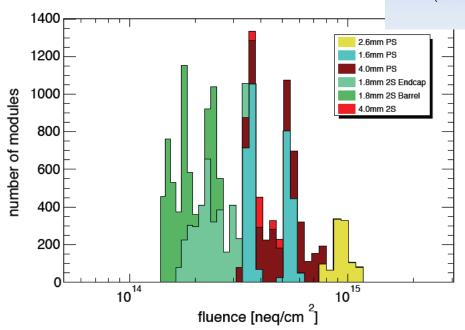
2S p_T module

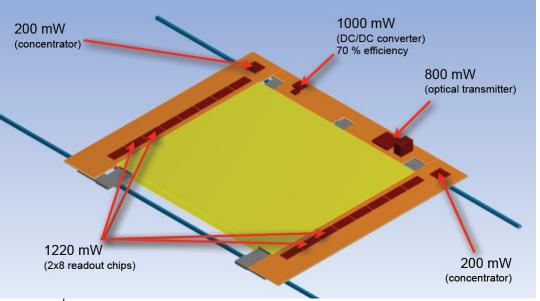

- for r > 40cm
- 2 strip sensor on top of each other
- sensors wire-bonded to hybrid from top & bottom
- strip dimensions: 5cm x 90µm
- 10 cm x 10 cm

concentrator

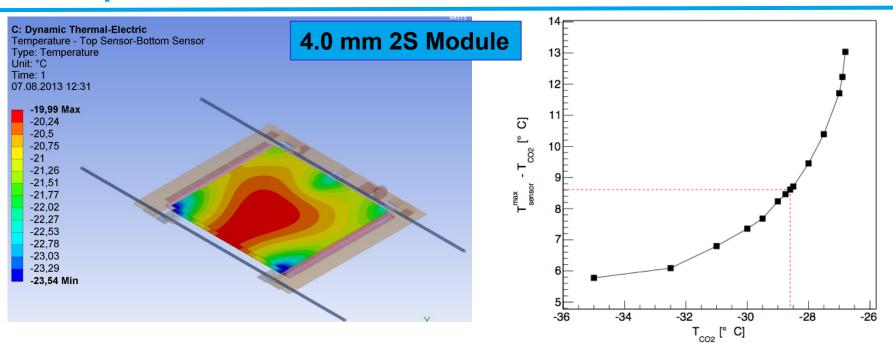

- for r > 20cm
- 1 strip sensor and 1 pixel sensor on top of each other
- strip dimensions: 2.5cm x 100μm
- pixel dimensions: 1.5mm x 100μm
- provides z information

2S Module - Rigid Hybrid Option


2S Module - Flexible Hybrid Option

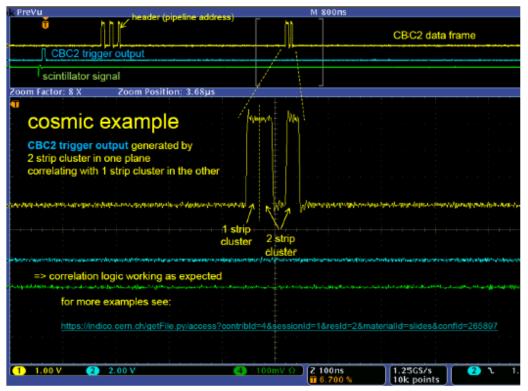


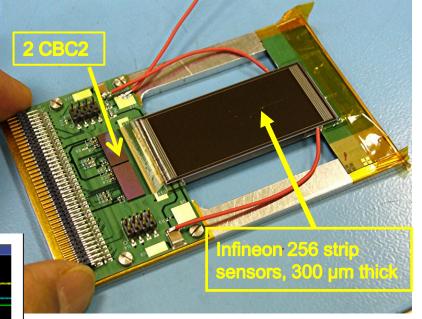
Module Power Dissipation


- > 3.42 W
- plus sensors

- combination of # of modules and fluence vs. module position
- fluence obtained from FLUKA for 3000 fb-1
- > safety factors for fluence applied: 50%
 - \rightarrow 2S: 7e14n_{eq}/cm² (R>60cm)
 - → PS: 1.6e15n_{eq}/cm² (20cm<R<60cm)
- sensor thickness 200µm

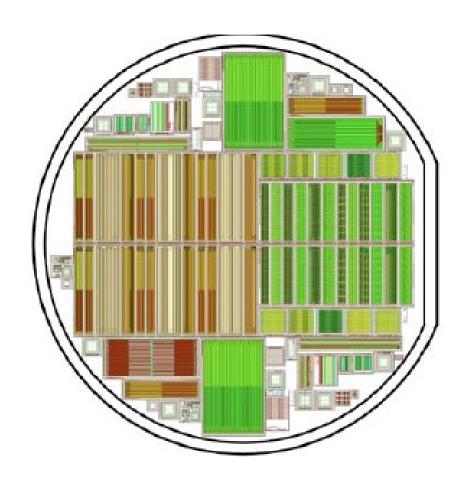
Example Results of Thermal FEA




- > heat transfer coefficient from pipe to CO₂ is 5000 W/m2/K
- heat transfer coefficient from module to cooling blocks is 10000 W/m2/K
- fluence for sensor power dissipation calculation is 7.35x10¹⁴ n_{eq}/cm²
- temperature of CO₂ tuned to obtain -20 °C max. T on sensors
- temperature gradient on sensors 3.5 °C
- cooling contacts have to be kept at -28.6 °C to obtain -20 °C max. T on sensors
- thermal runaway reached at ~ -27 °C

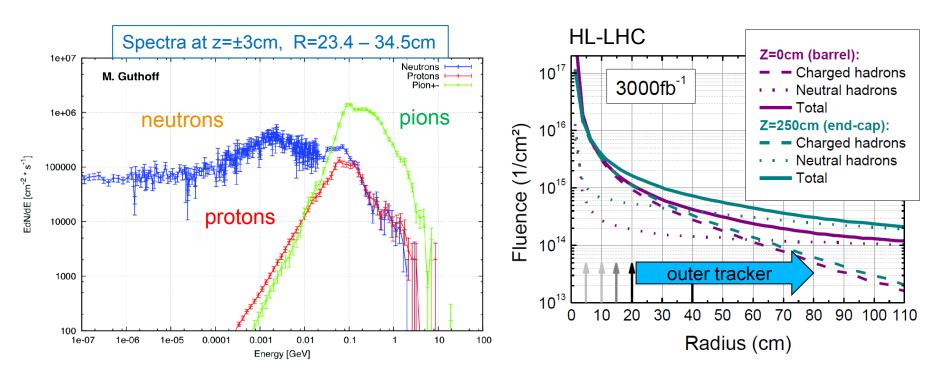
The CMS Binary Chip

- IBM 130nm CMOS process
- binary, unsparsified architecture
 - retains chip and system simplicity
 - but no pulse height data
- receives data from both sensors
- stub finding works



- testbeam in preparation
- will use these CBC2 modules
- show trigger capability in beam

Sensors for the Phase-2 Outer Tracker


- campaign to identify sensors (material and polarity) for the Phase-2 Outer Tracker
- chose single supplier (HPK) in order to compare sensors from same (or at least similar) processes
- different structures, for example:
 - pad sensors (diodes) for material studies
 - mini-strip sensors for charge collection
 - MSSD sensors to study geometry effects

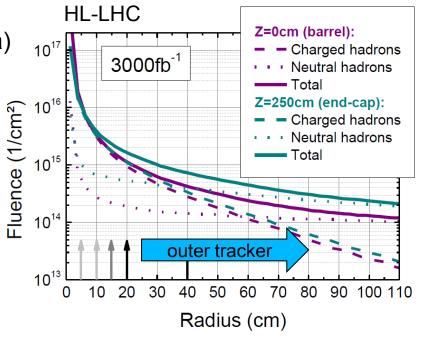
Irradiations: p, n and mixed

Radius	Protons Φ _{eq} [cm ⁻²]	Neutrons Φ _{eq} [cm ⁻²]	Total Φ _{eq} [cm ⁻²]
40 cm	3 · 10 ¹⁴	4 · 10 ¹⁴	7 · 10 ¹⁴
20 cm	1 · 10 ¹⁵	5 · 10 ¹⁴	1.5 · 10 ¹⁵
15 cm	1.5 · 10 ¹⁵	6 · 10 ¹⁴	2.1 · 10 ¹⁵

Energy of charged hadrons peaks between 100 MeV and 1 GeV

Irradiations: p, n and mixed

Radius	Protons Φ _{eq} [cm ⁻²]	Neutrons Φ _{eq} [cm ⁻²]	Total Φ _{eq} [cm ⁻²]
40 cm	3 · 10 ¹⁴	4 · 10 ¹⁴	7 · 10 ¹⁴
20 cm	1 · 10 ¹⁵	5 · 10 ¹⁴	1.5 · 10 ¹⁵
15 cm	1.5 · 10 ¹⁵	6 · 10 ¹⁴	2.1 · 10 ¹⁵

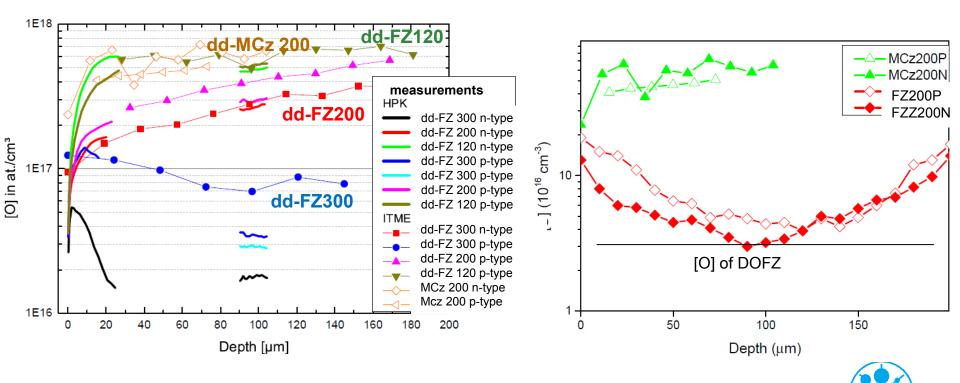

Neutrons: 1 MeV (TRIGA reactor Ljubljana)

Protons: 23 MeV (Karlsruhe cyclotron)

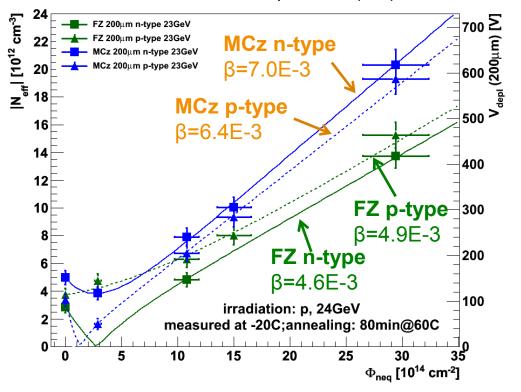
23 GeV (CERN PS)

crosscheck:

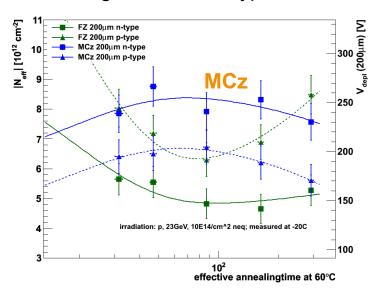
800 MeV (Los Alamos)



Energy of charged hadrons peaks between 100 MeV and 1 GeV

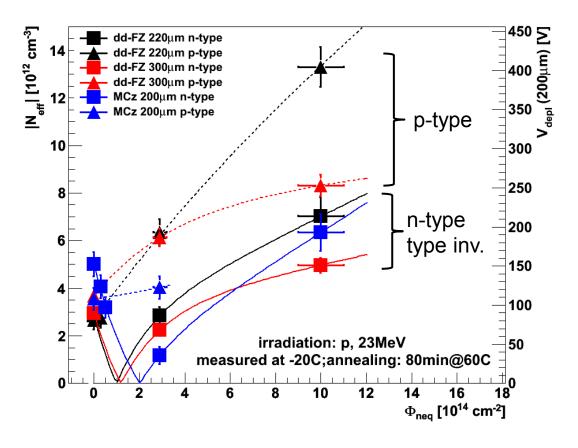

Materials and their Oxygen Content

Material	Thinning method	Active thickness [µm]	Wafer thickness [µm]	[O] [10 ¹⁷ cm ⁻³]
dd-FZ	deep diffusion	200, 300	320	3, 1
FZ	wafer thinning	200	200	0.5
MCz		200	200	4


Depletion Voltage after 23 GeV protons

Irradiated with 23 GeV protons (PS)

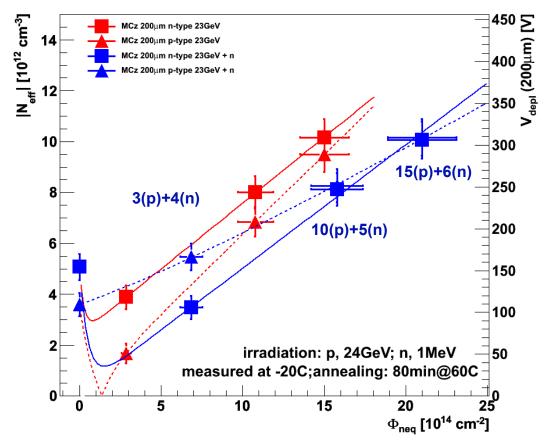
Depletion voltage below 600V at highest Φ (200 μ m) Introduction rate smaller for FZ than for MCz

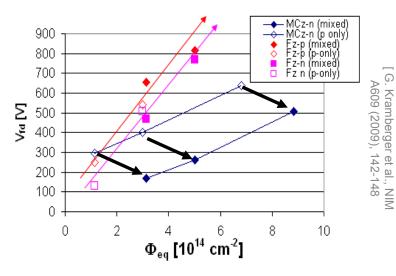

Annealing→Info about type inversion

Type inversion	FZ	MCZ
N-type	yes	no
P-type	no	yes

Depletion Voltage after 23 MeV protons

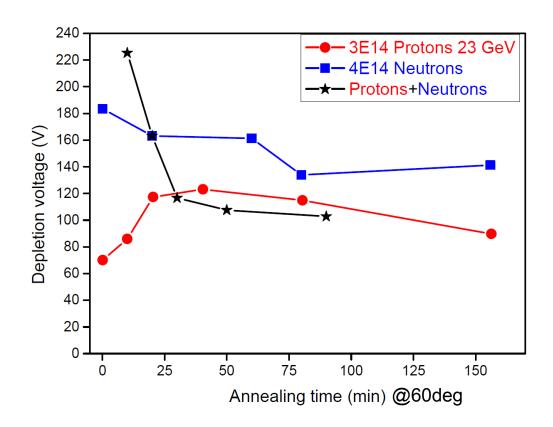
different picture compared to GeV irradiation:


Type inversion	dd- FZ	MCZ
N-type	yes	yes
P-type	no	no


lower depletion voltage for n-type due to type inversion

Compensation in MCz

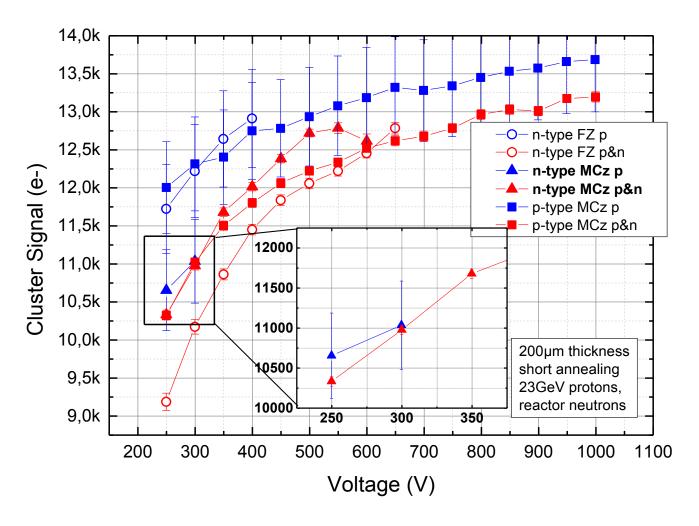
- compensation effect seen by Kramberger et al. of depletion voltage after mixed (p+n) irradiation in MCz
- not seen in Fz
- attributed to oxygen content



→ Compensation seen in both polarities of MCz

Compensation in n-type MCz - annealing

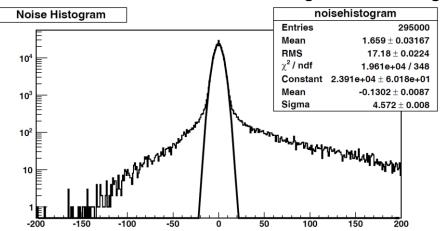
- > 23 GeV p irradiation: n-type annealing →no type inversion
- > n irradiation: p-type annealing →type inversion
- mixed: strong drop of depletion voltage

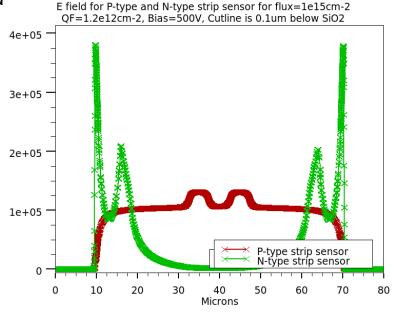


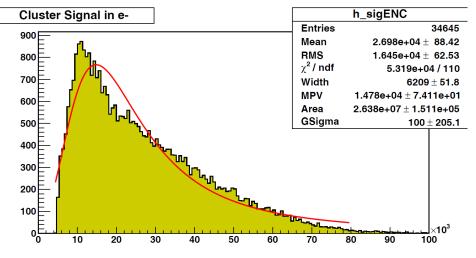
- depletion voltage after mixed irradiation lower than sum of individual depletion voltages
 - →dramatic annealing effect

Charge Collection – Compensation in n-MCz?

CC measurements confirm benefit of n-MCz, but measurements only up to 300V (RGHs for p only sample)

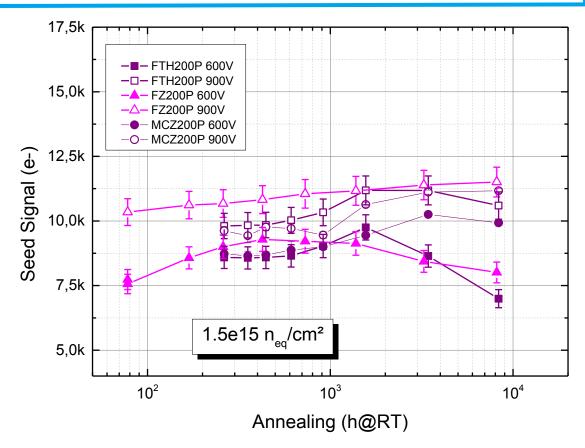

3e14 23 GeV p 3e14 p + 4e14 n




Random Ghost Hits in n-type sensors

random ghost hits appear after (charged) hadron irradiation;

- seen in n-type sensors
- here: FZ 200um thin strip sensor
- sets in at different bias voltages, annealing

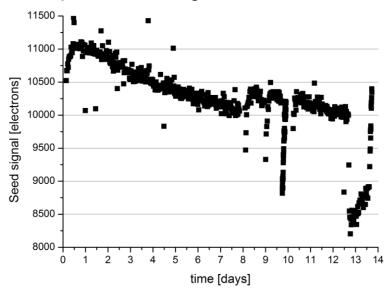

simulations:

Important is the **interplay** between **bulk damage** (traps) and **surface damage** (oxide charge)

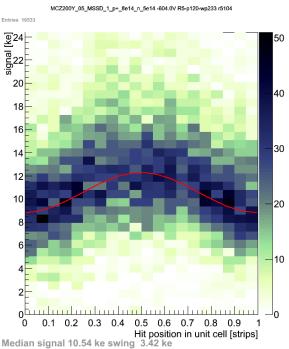
P-type: peak E-field decreases with increasing Qf N-type: peak E-field increases with increasing Qf higher probability for break-down in n-type

Annealing of seed signal for 1.5e15n_{eq}/cm² p-type

- thin p-type sensors work well
- > show seed signals above ~8ke- at 600V until ~ 20w@RT
- Annealing scenario with Tracker at RT for 2 weeks each year works

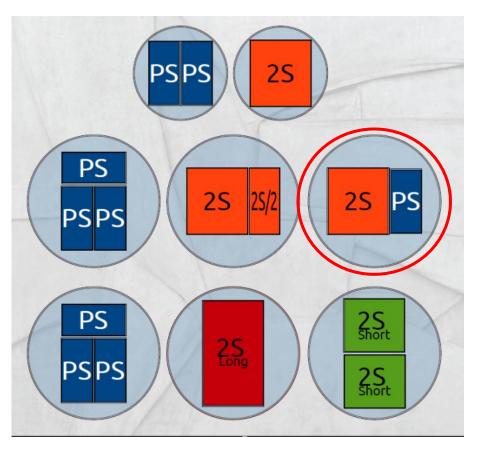

Choice of sensor polarity for Phase-2 Outer Tracker

- there are only a few measurements for which n-type material shows higher seed signal than p-type
- above 7x10¹⁴n_{eq}/cm² random ghost hits appear in n-type material
- > this noise feature was studied in detail → see talk of A. Dierlamm
 - measurements confirmed by device simulations
 - in n-type material bulk defects and surface charge generate high E-fields close to the implants,
 - →generate fake hits under certain conditions
- the 200µm p-type sensors we have in hands would work for the entire Tracker under HL-LHC conditions:
 - no dramatic noise issue
 - flat annealing behavior
 - seed charge > 8ke- @ 600V (~10k@900V) for max. fluence (threshold <~6ke)</p>
- → CMS decided to concentrate on p-type material!

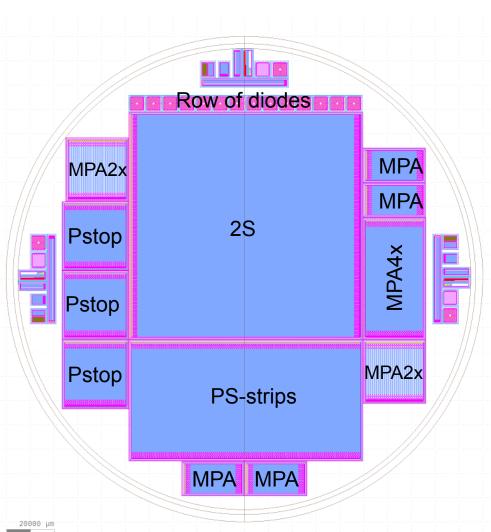


Some Sensor open issues

- study in more detail effect of [O] on p-type
- study signal losses between strips
 - after irradiation to fluences ~1.5x10¹⁵ all materials and polarities show up to 30% signal loss between strips
 - could possibly be prevented by design (surface effect?)
- long-term studies
 - signal degradation in seed strip, partially due to charge
 - spread into neighbors


MCz p-spray type

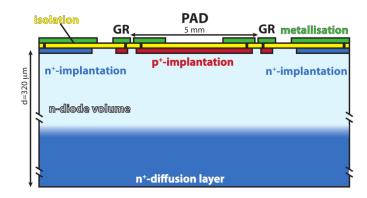
FZ 200um p-spray type annealed to 156min@60 biased at 1000V

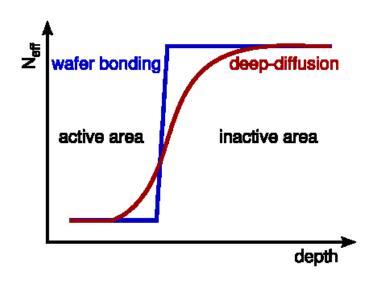

Future Plans: 8" Sensors

- > Following a prototype run with Infineon, a follow-up is proposed with the aim to evaluate the Infineon process on 8"
- Seek compatibility with 6"
 - implies that we do not use 8" area optimal
 - But better suitable for existing module designs
- Need a layout which is suitable for
 - Building module prototypes (2S and PS)
 - Evaluate 8" production (n-on-p)
 - P-stop studies

Future Plans: 8" Sensors

- Following a prototype run with Infineon, a follow-up is proposed with the aim to evaluate the Infineon process on 8"
- Seek compatibility with 6"
 - implies that we do not use 8" area optimal
 - But better suitable for existing module designs
- Need a layout which is suitable for
 - Building module prototypes (2S and PS)
 - Evaluate 8" production (n-on-p)
 - P-stop studies
- Proposal for 1x2S, 1xPS-strips, several MPA (PS-pixel) sensors, different p-stop layouts


Summary


- The Phase-2 Outer Tracker baseline layout has been chosen
- The 2S module design is well advanced
- Track trigger requirement presents an unprecedented challenge
- Sensor R&D with HPK campaign lead to choice of sensor polarity
- Now concentrating on p-type material for sensor optimization
- Infineon as a possible vendor is being evaluated
- Technical proposal in 2014

> BACKUP

